Persian - Wikilangs Models

Comprehensive Research Report & Full Ablation Study

This repository contains NLP models trained and evaluated by Wikilangs, specifically on Persian Wikipedia data. We analyze tokenizers, n-gram models, Markov chains, vocabulary statistics, and word embeddings.

📋 Repository Contents

Models & Assets

  • Tokenizers (8k, 16k, 32k, 64k)
  • N-gram models (2, 3, 4, 5-gram)
  • Markov chains (context of 1, 2, 3, 4 and 5)
  • Subword N-gram and Markov chains
  • Embeddings in various sizes and dimensions (aligned and unaligned)
  • Language Vocabulary
  • Language Statistics

Performance Dashboard

Analysis and Evaluation


1. Tokenizer Evaluation

Tokenizer Compression

Tokenizer Fertility

Tokenizer OOV

Total Tokens

Results

Vocab Size Compression Avg Token Len UNK Rate Total Tokens
8k 3.527x 3.53 0.1283% 3,130,017
16k 3.861x 3.86 0.1405% 2,859,317
32k 4.095x 4.10 0.1490% 2,696,153
64k 4.243x 🏆 4.24 0.1543% 2,602,283

Tokenization Examples

Below are sample sentences tokenized with each vocabulary size:

Sample 1: ماتشووتسی یک منطقهٔ مسکونی در بلغارستان است که در تریاونا واقع شده‌است. جستارهای...

Vocab Tokens Count
8k ▁مات شو وت سی ▁یک ▁منطقهٔ ▁مسکونی ▁در ▁بلغارستان ▁است ... (+23 more) 33
16k ▁مات شو وت سی ▁یک ▁منطقهٔ ▁مسکونی ▁در ▁بلغارستان ▁است ... (+23 more) 33
32k ▁مات شو وتسی ▁یک ▁منطقهٔ ▁مسکونی ▁در ▁بلغارستان ▁است ▁که ... (+21 more) 31
64k ▁مات شو وتسی ▁یک ▁منطقهٔ ▁مسکونی ▁در ▁بلغارستان ▁است ▁که ... (+18 more) 28

Sample 2: بیرم از شهرهای شهرستان لارستان در استان فارس ایران است. بیرم از روستاهای بخش خلی...

Vocab Tokens Count
8k ▁بیرم ▁از ▁شهرهای ▁شهرستان ▁لارستان ▁در ▁استان ▁فارس ▁ایران ▁است ... (+24 more) 34
16k ▁بیرم ▁از ▁شهرهای ▁شهرستان ▁لارستان ▁در ▁استان ▁فارس ▁ایران ▁است ... (+23 more) 33
32k ▁بیرم ▁از ▁شهرهای ▁شهرستان ▁لارستان ▁در ▁استان ▁فارس ▁ایران ▁است ... (+22 more) 32
64k ▁بیرم ▁از ▁شهرهای ▁شهرستان ▁لارستان ▁در ▁استان ▁فارس ▁ایران ▁است ... (+20 more) 30

Sample 3: +اچ‌ام‌اس سوخه سوخه یک کشتی بود. منابع پادشاهی متحده در جنگ نیروی دریایی پادشاهی...

Vocab Tokens Count
8k ▁+ اچ ▁ام ▁اس ▁سو خه ▁سو خه ▁یک ▁کشتی ... (+14 more) 24
16k ▁+ اچ ▁ام ▁اس ▁سو خه ▁سو خه ▁یک ▁کشتی ... (+14 more) 24
32k ▁+ اچ ▁ام ▁اس ▁سو خه ▁سو خه ▁یک ▁کشتی ... (+14 more) 24
64k ▁+ اچ ▁ام ▁اس ▁سو خه ▁سو خه ▁یک ▁کشتی ... (+14 more) 24

Key Findings

  • Best Compression: 64k achieves 4.243x compression
  • Lowest UNK Rate: 8k with 0.1283% unknown tokens
  • Trade-off: Larger vocabularies improve compression but increase model size
  • Recommendation: 32k vocabulary provides optimal balance for production use

2. N-gram Model Evaluation

N-gram Perplexity

N-gram Unique

N-gram Coverage

Results

N-gram Variant Perplexity Entropy Unique N-grams Top-100 Coverage Top-1000 Coverage
2-gram Word 183,630 17.49 3,336,831 10.3% 24.0%
2-gram Subword 379 🏆 8.57 47,558 62.6% 96.5%
3-gram Word 832,344 19.67 7,731,216 6.6% 15.3%
3-gram Subword 3,487 11.77 356,084 24.3% 63.9%
4-gram Word 1,844,924 20.82 13,689,983 5.8% 13.6%
4-gram Subword 20,559 14.33 2,014,430 11.9% 35.4%
5-gram Word 1,346,906 20.36 10,076,229 6.1% 15.2%
5-gram Subword 88,433 16.43 6,647,245 7.0% 22.9%

Top 5 N-grams by Size

2-grams (Word):

Rank N-gram Count
1 که در 744,271
2 است که 697,906
3 در سال 661,273
4 ایالات متحده 589,928
5 متحده آمریکا 513,365

3-grams (Word):

Rank N-gram Count
1 ایالات متحده آمریکا 512,065
2 پیوند به بیرون 415,452
3 منابع پیوند به 379,528
4 است که در 319,325
5 اهل ایالات متحده 267,325

4-grams (Word):

Rank N-gram Count
1 منابع پیوند به بیرون 379,441
2 اهل ایالات متحده آمریکا 266,562
3 جستارهای وابسته فهرست شهرهای 174,335
4 واقع شده‌است جستارهای وابسته 97,965
5 شده‌است جستارهای وابسته فهرست 92,488

5-grams (Word):

Rank N-gram Count
1 واقع شده‌است جستارهای وابسته فهرست 91,004
2 شده‌است جستارهای وابسته فهرست شهرهای 90,657
3 منابع پیوند به بیرون گمر 86,274
4 پیوند به بیرون گمر شهرهای 85,065
5 فوتبال مرد دور از وطن 72,579

2-grams (Subword):

Rank N-gram Count
1 ی _ 28,243,898
2 _ ا 26,288,926
3 ه _ 24,954,894
4 _ ب 20,887,663
5 ر _ 20,421,774

3-grams (Subword):

Rank N-gram Count
1 _ د ر 10,106,333
2 د ر _ 9,224,307
3 ا ن _ 8,509,406
4 ا ی _ 7,222,284
5 _ و _ 7,113,673

4-grams (Subword):

Rank N-gram Count
1 _ د ر _ 8,890,815
2 _ ب ه _ 5,096,564
3 _ ا ز _ 4,585,049
4 ه ا ی _ 4,091,676
5 _ ا س ت 3,806,104

5-grams (Subword):

Rank N-gram Count
1 _ ا ی ن _ 2,178,073
2 ا س ت . _ 1,832,058
3 س ت ا ن _ 1,682,900
4 ه _ د ر _ 1,583,560
5 ی _ د ر _ 1,470,602

Key Findings

  • Best Perplexity: 2-gram (subword) with 379
  • Entropy Trend: Decreases with larger n-grams (more predictable)
  • Coverage: Top-1000 patterns cover ~23% of corpus
  • Recommendation: 4-gram or 5-gram for best predictive performance

3. Markov Chain Evaluation

Markov Entropy

Markov Contexts

Markov Branching

Results

Context Variant Avg Entropy Perplexity Branching Factor Unique Contexts Predictability
1 Word 0.8548 1.809 13.21 2,678,882 14.5%
1 Subword 1.3337 2.520 11.38 15,482 0.0%
2 Word 0.4362 1.353 2.75 35,320,736 56.4%
2 Subword 0.7134 1.640 4.92 176,248 28.7%
3 Word 0.1895 1.140 1.46 96,895,216 81.1%
3 Subword 0.6916 1.615 4.21 866,499 30.8%
4 Word 0.0781 🏆 1.056 1.15 141,487,399 92.2%
4 Subword 0.6685 1.589 3.49 3,645,685 33.1%

Generated Text Samples (Word-based)

Below are text samples generated from each word-based Markov chain model:

Context Size 1:

  1. در ایالات متحده آمریکا و کانادای ژاپنی‌تبار را بر پایه سرشماری مرکز ملی حزب جمهوری خلق
  2. و شهرک‌ها در مورد حقد و در سال ادوارد آزبورن افشا می‌کند در مهد کلیسای سنت
  3. به بیرون وب‌گاه الهام از مفاهیم کلی به یاد می‌شود در بمبئی وجود دارد که خطر

Context Size 2:

  1. که در حوزه قضایی آن را به اجرا پرداخت جایی که پیام معاد خود را با گفتن
  2. است که در آتش انداخته بود که روز فرا می‌رسد مردمانی که احتمالاً بیشترین اطلاعات را از
  3. در سال خورشیدی در یازده سینما در فیلیسن در سلام سینما پایان مراحل به آموزش را نیز

Context Size 3:

  1. ایالات متحده آمریکا بازی کرده‌است منابع پیوند به بیرون دانشگاه ملی تایوان جمهوری چین بر تایوان میلاد...
  2. پیوند به بیرون درخت تجزیه منابع ویکی انگلیسی حشرات شیمیایی پیاده‌گردی شیمیایی خانگی آفت
  3. منابع پیوند به بیرون خرد سنجاب جوندگان

Context Size 4:

  1. منابع پیوند به بیرون گمر شهرهای ایتالیا و شهرک‌ها در ونتو استان پادوا گوتیک در ونتو
  2. اهل ایالات متحده آمریکا زن فیلم صامت اهل ارمنستان زن فیلم اهل ارمنستان انستیتو دولتی هنری و نمایشی ا...
  3. جستارهای وابسته فهرست شهرهای پرو منابع پیوند به بیرون سیارک در دادگان اجرام کوچک ناسا آسمانی کشف‌شده...

Generated Text Samples (Subword-based)

Below are text samples generated from each subword-based Markov chain model:

Context Size 1:

  1. _راشدین_انهر_قا_
  2. ار_کر_دروده_ستاب
  3. ی_جه_ماز_–_جملوُر

Context Size 2:

  1. ی_که_زنده_اقتل‌عا_
  2. _اویه_همهٔ_ازده_ار
  3. ه_داده_کمی_مان_گر

Context Size 3:

  1. _در_ایتکامنی_ککوال
  2. در_با_بر_ورزش_زوده
  3. ان_محسوب_می‌کند._بس

Context Size 4:

  1. _در_سوالاچیق،_ماه_م
  2. _به_شهرستان_اضافه_ش
  3. _از_سال_و_میدان_مسئ

Key Findings

  • Best Predictability: Context-4 (word) with 92.2% predictability
  • Branching Factor: Decreases with context size (more deterministic)
  • Memory Trade-off: Larger contexts require more storage (3,645,685 contexts)
  • Recommendation: Context-3 or Context-4 for text generation

4. Vocabulary Analysis

Zipf's Law

Top Words

Coverage Curve

Statistics

Metric Value
Vocabulary Size 1,135,755
Total Tokens 210,116,418
Mean Frequency 185.00
Median Frequency 4
Frequency Std Dev 14539.94

Most Common Words

Rank Word Frequency
1 در 8,951,565
2 و 7,141,934
3 به 5,299,752
4 از 4,633,530
5 که 3,237,693
6 است 2,577,235
7 را 2,215,110
8 این 2,214,119
9 با 1,931,901
10 یک 1,432,476

Least Common Words (from vocabulary)

Rank Word Frequency
1 ناصربک 2
2 نساف 2
3 پاردائف 2
4 araviiskaia 2
5 berardesca 2
6 ویمشورست 2
7 نوک‌الکترودها 2
8 آلچیاتی 2
9 امبلماتا 2
10 دیلماما 2

Zipf's Law Analysis

Metric Value
Zipf Coefficient 1.0967
R² (Goodness of Fit) 0.988576
Adherence Quality excellent

Coverage Analysis

Top N Words Coverage
Top 100 36.5%
Top 1,000 61.6%
Top 5,000 80.0%
Top 10,000 86.0%

Key Findings

  • Zipf Compliance: R²=0.9886 indicates excellent adherence to Zipf's law
  • High Frequency Dominance: Top 100 words cover 36.5% of corpus
  • Long Tail: 1,125,755 words needed for remaining 14.0% coverage

5. Word Embeddings Evaluation

Embedding Isotropy

Similarity Matrix

t-SNE Words

t-SNE Sentences

5.1 Cross-Lingual Alignment

Alignment Quality

Multilingual t-SNE

5.2 Model Comparison

Model Dimension Isotropy Semantic Density Alignment R@1 Alignment R@10
mono_32d 32 0.8001 🏆 0.4045 N/A N/A
mono_64d 64 0.7876 0.3078 N/A N/A
mono_128d 128 0.7520 0.2408 N/A N/A
aligned_32d 32 0.8001 0.4053 0.1940 0.6040
aligned_64d 64 0.7876 0.3077 0.3400 0.7420
aligned_128d 128 0.7520 0.2452 0.4980 0.8600

Key Findings

  • Best Isotropy: mono_32d with 0.8001 (more uniform distribution)
  • Semantic Density: Average pairwise similarity of 0.3186. Lower values indicate better semantic separation.
  • Alignment Quality: Aligned models achieve up to 49.8% R@1 in cross-lingual retrieval.
  • Recommendation: 128d aligned for best cross-lingual performance

6. Morphological Analysis (Experimental)

This section presents an automated morphological analysis derived from the statistical divergence between word-level and subword-level models. By analyzing where subword predictability spikes and where word-level coverage fails, we can infer linguistic structures without supervised data.

6.1 Productivity & Complexity

Metric Value Interpretation Recommendation
Productivity Index 5.000 High morphological productivity Reliable analysis
Idiomaticity Gap -0.338 Low formulaic content -

6.2 Affix Inventory (Productive Units)

These are the most productive prefixes and suffixes identified by sampling the vocabulary for global substitutability patterns. A unit is considered an affix if stripping it leaves a valid stem that appears in other contexts.

Productive Prefixes

Prefix Examples
استنزبری, ایواشوف, الفهری
ملاکین, مينرالي, مهدیست‌ها
-ال الفهری, السِّنینَ, القیود
بلوتوس, بوفالوشهر, برخی‌تبار
تویت, تعطيلات, تی‌تی‌پی
-با باشگاهش, باغکاری, بادالگاچی
کاسانی, کرایچگو, کوسونوکی
سکایی, سنگ‌دژ, سدۀ

Productive Suffixes

Suffix Examples
استنزبری, کاسانی, پورتیشی
نداپلاتین, ملاکین, پاستوریزه‌کردن
قدیموا, آنامادووا, هاسلاوا
-ای فون‌های, غزل‌های, جوشانده‌ای
-ان پلاتهکونمبولقهرمان, گل‌سان, دنیاداران
دیوسه, ورازده, استودله
-ها مهدیست‌ها, شکنجه‌گرها, دوده‌ها
بوفالوشهر, شغار, ۴۴۰هزار

6.3 Bound Stems (Lexical Roots)

Bound stems are high-frequency subword units that are semantically cohesive but rarely appear as standalone words. These often correspond to the 'core' of a word that requires inflection or derivation to be valid.

Stem Cohesion Substitutability Examples
اشگا 2.96x 41 contexts اشگاه, باشگا, باشگال
باشگ 2.67x 48 contexts باشگه, باشگل, باشگا
تحده 2.61x 43 contexts متحده, متحدهٔ, متحدهچ
انشگ 2.62x 38 contexts انشگاه, دانشگا, رانشگر
مپیک 2.77x 30 contexts امپیک, تمپیکو, المپیک
نشگا 2.75x 30 contexts انشگاه, تنشگاه, دانشگا
یلاد 2.19x 70 contexts گیلاد, ایلاد, نیلاد
شهرس 2.26x 58 contexts شهرسپ, شهرست, شهرسب
تفاد 2.66x 29 contexts انتفاد, ستفاده, استفاد
یتال 1.72x 168 contexts ایتال, خیتال, آیتال
فاده 2.56x 30 contexts افاده, اسفاده, ستفاده
تلوی 2.22x 35 contexts تلوین, اتلوی, تلوید

6.4 Affix Compatibility (Co-occurrence)

This table shows which prefixes and suffixes most frequently co-occur on the same stems, revealing the 'stacking' rules of the language's morphology.

Prefix Suffix Frequency Examples
117 words الجزیره‌ای, استیشنی
95 words مانچویی, مغالطه‌ی
74 words ازینوا, اوریساهارا
69 words اوتیچیان, ازروحانیون
68 words ب‍ال‍ی‍ن‍ی, بیخبری
63 words ترویانی, توپ‌بازی
61 words کژکارکردی, کاردستی
60 words مالک‌شدن, مورمحمدخان
58 words موتسا, میتکیانا
57 words کولاگینا, کورولوندیا

6.5 Recursive Morpheme Segmentation

Using Recursive Hierarchical Substitutability, we decompose complex words into their constituent morphemes. This approach handles nested affixes (e.g., prefix-prefix-root-suffix).

Word Suggested Split Confidence Stem
جواهرکلام جواهرکل-ا-م 7.5 ا
دسانگتوایس دسانگتو-ای-س 7.5 ای
درپیرعباس درپیرعب-ا-س 7.5 ا
امان‌بایف امان‌ب-ای-ف 7.5 ای
فایده‌گرایی فایده‌گر-ای-ی 7.5 ای
دروه‌هایی دروه‌ه-ای-ی 7.5 ای
کلاسیک‌گرا کلاسیک‌گ-ر-ا 7.5 ر
فاحشه‌هایی فاحشه‌ه-ای-ی 7.5 ای
ماردریایی ماردری-ای-ی 7.5 ای
همرقص‌هایت همرقص‌ه-ای-ت 7.5 ای
بازنگری‌هایی بازنگری‌ه-ای-ی 7.5 ای
فراکسیون‌هایی فراکسیون‌ه-ای-ی 7.5 ای
سودرکولای سودرکو-ل-ای 7.5 ل
دیتمارهامان دیتمارها-م-ان 7.5 م
واختنهایم واختنه-ای-م 7.5 ای

6.6 Linguistic Interpretation

Automated Insight: The language Persian shows high morphological productivity. The subword models are significantly more efficient than word models, suggesting a rich system of affixation or compounding.


7. Summary & Recommendations

Performance Dashboard

Production Recommendations

Component Recommended Rationale
Tokenizer 64k BPE Best compression (4.24x)
N-gram 2-gram Lowest perplexity (379)
Markov Context-4 Highest predictability (92.2%)
Embeddings 100d Balanced semantic capture and isotropy

Appendix: Metrics Glossary & Interpretation Guide

This section provides definitions, intuitions, and guidance for interpreting the metrics used throughout this report.

Tokenizer Metrics

Compression Ratio

Definition: The ratio of characters to tokens (chars/token). Measures how efficiently the tokenizer represents text.

Intuition: Higher compression means fewer tokens needed to represent the same text, reducing sequence lengths for downstream models. A 3x compression means ~3 characters per token on average.

What to seek: Higher is generally better for efficiency, but extremely high compression may indicate overly aggressive merging that loses morphological information.

Average Token Length (Fertility)

Definition: Mean number of characters per token produced by the tokenizer.

Intuition: Reflects the granularity of tokenization. Longer tokens capture more context but may struggle with rare words; shorter tokens are more flexible but increase sequence length.

What to seek: Balance between 2-5 characters for most languages. Arabic/morphologically-rich languages may benefit from slightly longer tokens.

Unknown Token Rate (OOV Rate)

Definition: Percentage of tokens that map to the unknown/UNK token, indicating words the tokenizer cannot represent.

Intuition: Lower OOV means better vocabulary coverage. High OOV indicates the tokenizer encounters many unseen character sequences.

What to seek: Below 1% is excellent; below 5% is acceptable. BPE tokenizers typically achieve very low OOV due to subword fallback.

N-gram Model Metrics

Perplexity

Definition: Measures how "surprised" the model is by test data. Mathematically: 2^(cross-entropy). Lower values indicate better prediction.

Intuition: If perplexity is 100, the model is as uncertain as if choosing uniformly among 100 options at each step. A perplexity of 10 means effectively choosing among 10 equally likely options.

What to seek: Lower is better. Perplexity decreases with larger n-grams (more context). Values vary widely by language and corpus size.

Entropy

Definition: Average information content (in bits) needed to encode the next token given the context. Related to perplexity: perplexity = 2^entropy.

Intuition: High entropy means high uncertainty/randomness; low entropy means predictable patterns. Natural language typically has entropy between 1-4 bits per character.

What to seek: Lower entropy indicates more predictable text patterns. Entropy should decrease as n-gram size increases.

Coverage (Top-K)

Definition: Percentage of corpus occurrences explained by the top K most frequent n-grams.

Intuition: High coverage with few patterns indicates repetitive/formulaic text; low coverage suggests diverse vocabulary usage.

What to seek: Depends on use case. For language modeling, moderate coverage (40-60% with top-1000) is typical for natural text.

Markov Chain Metrics

Average Entropy

Definition: Mean entropy across all contexts, measuring average uncertainty in next-word prediction.

Intuition: Lower entropy means the model is more confident about what comes next. Context-1 has high entropy (many possible next words); Context-4 has low entropy (few likely continuations).

What to seek: Decreasing entropy with larger context sizes. Very low entropy (<0.1) indicates highly deterministic transitions.

Branching Factor

Definition: Average number of unique next tokens observed for each context.

Intuition: High branching = many possible continuations (flexible but uncertain); low branching = few options (predictable but potentially repetitive).

What to seek: Branching factor should decrease with context size. Values near 1.0 indicate nearly deterministic chains.

Predictability

Definition: Derived metric: (1 - normalized_entropy) × 100%. Indicates how deterministic the model's predictions are.

Intuition: 100% predictability means the next word is always certain; 0% means completely random. Real text falls between these extremes.

What to seek: Higher predictability for text generation quality, but too high (>98%) may produce repetitive output.

Vocabulary & Zipf's Law Metrics

Zipf's Coefficient

Definition: The slope of the log-log plot of word frequency vs. rank. Zipf's law predicts this should be approximately -1.

Intuition: A coefficient near -1 indicates the corpus follows natural language patterns where a few words are very common and most words are rare.

What to seek: Values between -0.8 and -1.2 indicate healthy natural language distribution. Deviations may suggest domain-specific or artificial text.

R² (Coefficient of Determination)

Definition: Measures how well the linear fit explains the frequency-rank relationship. Ranges from 0 to 1.

Intuition: R² near 1.0 means the data closely follows Zipf's law; lower values indicate deviation from expected word frequency patterns.

What to seek: R² > 0.95 is excellent; > 0.99 indicates near-perfect Zipf adherence typical of large natural corpora.

Vocabulary Coverage

Definition: Cumulative percentage of corpus tokens accounted for by the top N words.

Intuition: Shows how concentrated word usage is. If top-100 words cover 50% of text, the corpus relies heavily on common words.

What to seek: Top-100 covering 30-50% is typical. Higher coverage indicates more repetitive text; lower suggests richer vocabulary.

Word Embedding Metrics

Isotropy

Definition: Measures how uniformly distributed vectors are in the embedding space. Computed as the ratio of minimum to maximum singular values.

Intuition: High isotropy (near 1.0) means vectors spread evenly in all directions; low isotropy means vectors cluster in certain directions, reducing expressiveness.

What to seek: Higher isotropy generally indicates better-quality embeddings. Values > 0.1 are reasonable; > 0.3 is good. Lower-dimensional embeddings tend to have higher isotropy.

Average Norm

Definition: Mean magnitude (L2 norm) of word vectors in the embedding space.

Intuition: Indicates the typical "length" of vectors. Consistent norms suggest stable training; high variance may indicate some words are undertrained.

What to seek: Relatively consistent norms across models. The absolute value matters less than consistency (low std deviation).

Cosine Similarity

Definition: Measures angular similarity between vectors, ranging from -1 (opposite) to 1 (identical direction).

Intuition: Words with similar meanings should have high cosine similarity. This is the standard metric for semantic relatedness in embeddings.

What to seek: Semantically related words should score > 0.5; unrelated words should be near 0. Synonyms often score > 0.7.

t-SNE Visualization

Definition: t-Distributed Stochastic Neighbor Embedding - a dimensionality reduction technique that preserves local structure for visualization.

Intuition: Clusters in t-SNE plots indicate groups of semantically related words. Spread indicates vocabulary diversity; tight clusters suggest semantic coherence.

What to seek: Meaningful clusters (e.g., numbers together, verbs together). Avoid over-interpreting distances - t-SNE preserves local, not global, structure.

General Interpretation Guidelines

  1. Compare within model families: Metrics are most meaningful when comparing models of the same type (e.g., 8k vs 64k tokenizer).
  2. Consider trade-offs: Better performance on one metric often comes at the cost of another (e.g., compression vs. OOV rate).
  3. Context matters: Optimal values depend on downstream tasks. Text generation may prioritize different metrics than classification.
  4. Corpus influence: All metrics are influenced by corpus characteristics. Wikipedia text differs from social media or literature.
  5. Language-specific patterns: Morphologically rich languages (like Arabic) may show different optimal ranges than analytic languages.

Visualizations Index

Visualization Description
Tokenizer Compression Compression ratios by vocabulary size
Tokenizer Fertility Average token length by vocabulary
Tokenizer OOV Unknown token rates
Tokenizer Total Tokens Total tokens by vocabulary
N-gram Perplexity Perplexity by n-gram size
N-gram Entropy Entropy by n-gram size
N-gram Coverage Top pattern coverage
N-gram Unique Unique n-gram counts
Markov Entropy Entropy by context size
Markov Branching Branching factor by context
Markov Contexts Unique context counts
Zipf's Law Frequency-rank distribution with fit
Vocab Frequency Word frequency distribution
Top 20 Words Most frequent words
Vocab Coverage Cumulative coverage curve
Embedding Isotropy Vector space uniformity
Embedding Norms Vector magnitude distribution
Embedding Similarity Word similarity heatmap
Nearest Neighbors Similar words for key terms
t-SNE Words 2D word embedding visualization
t-SNE Sentences 2D sentence embedding visualization
Position Encoding Encoding method comparison
Model Sizes Storage requirements
Performance Dashboard Comprehensive performance overview

About This Project

Data Source

Models trained on wikipedia-monthly - a monthly snapshot of Wikipedia articles across 300+ languages.

Project

A project by Wikilangs - Open-source NLP models for every Wikipedia language.

Maintainer

Omar Kamali - Omneity Labs

Citation

If you use these models in your research, please cite:

@misc{wikilangs2025,
  author = {Kamali, Omar},
  title = {Wikilangs: Open NLP Models for Wikipedia Languages},
  year = {2025},
  doi = {10.5281/zenodo.18073153},
  publisher = {Zenodo},
  url = {https://huggingface.co/wikilangs}
  institution = {Omneity Labs}
}

License

MIT License - Free for academic and commercial use.

Links


Generated by Wikilangs Models Pipeline

Report Date: 2026-01-12 22:54:37

Downloads last month

-

Downloads are not tracked for this model. How to track
Inference Providers NEW
This model isn't deployed by any Inference Provider. 🙋 Ask for provider support

Dataset used to train wikilangs/fa