llama31-8b-halo-bikol-cpt

This model is a continuously pretrained model version of meta-llama/Llama-3.1-8B on sapinsapin/halo-bikol dataset which is webscraped bikol dataset.

Model description

More information needed

Intended uses & limitations

More information needed

Training and evaluation data

More information needed

Training procedure

Training hyperparameters

The following hyperparameters were used during training:

  • learning_rate: 5e-05
  • train_batch_size: 1
  • eval_batch_size: 8
  • seed: 42
  • distributed_type: multi-GPU
  • num_devices: 16
  • gradient_accumulation_steps: 8
  • total_train_batch_size: 128
  • total_eval_batch_size: 128
  • optimizer: Use OptimizerNames.ADAMW_TORCH_FUSED with betas=(0.9,0.95) and epsilon=1e-08 and optimizer_args=No additional optimizer arguments
  • lr_scheduler_type: cosine
  • lr_scheduler_warmup_ratio: 0.03
  • training_steps: 1500

Training results

Example inference:

Sending request to http://localhost:8000/v1/completions...
Payload: {
  "model": "sapinsapin/llama31-8b-halo-bikol-cpt",
  "prompt": "nasa hampang mismo kan dating planta",
  "max_tokens": 512,
  "temperature": 0.5
}

Status: 200
Response:
{
  "id": "cmpl-5b4eb44ef68f48f98b6e950250a40725",
  "object": "text_completion",
  "created": 1766879142,
  "model": "sapinsapin/llama31-8b-halo-bikol-cpt",
  "choices": [
    {
      "index": 0,
      "text": " kan lamang | Magbikol Kita Saturday, December 27, , 4:14am nasa hampang mismo kan dating planta kan lamang Published on Sunday, September 13, , 6:49pm by Ernie Verdadero | Midya-Midya An sabi sako kan sarong taga-planta kan lamang, kan makatapos sya nin high school, nagpuon syang magtrabaho sa dating planta kan ilaw sa Tabaco. Planta an sabi nya kan nagkakapirang mga kontrabanderong ginatos na taon na nagtalubo duman. Alas-10 nin aga si baad na pagtanom kan mga bulong. Pigbabantayan nin mga tawong armas an mga makamurumundong bulong tanganing maibitaran an pagluwas nin mga lamang. Sarong kanto kan planta an tinrabaho nya. Duman nagpuon an saiyang pagbibyahe. Primero nang nahiling nya an malain na estado kan tinampo sa Tabaco. Saro sa mga gibo nya na nakatudan nya iyo an pagtanom nin mga kahoy. Nin huli ta haloy nang pan\u00f4 nin mga bulong an planta, dakol na an mga kahoy na nagtatalubo duman. Sabi nya, maski malain an buhay mo, agom mo, kaibahan mo, sa pagtanom ka san\u00e1. Maski magretiro na sya, dai nya mapugulan an pagtanom. Sa harong nya an sarong establisimyento duman sa Tabaco na nagtatanom nin mga orchids. Sabi ko saiya, ikagwapo iyan. Syempre, sabi nya, carampatan man nanggad. Kun ano an bu\u00f3t sabihon kan carampatan, yano man an bu\u00f3t sabihon kan gwapo. Gabos kita mab\u00faot na tawo. Siisay an dai mab\u00faot? Sabi ko saiya, an tawong dai mab\u00faot iyo an tawong dai nakukuntento sa saiyang kapalibutan. Aram an tawo na dai nya mapugulan an paghanap nin paagi na makakatabang saiya tanganing mas",
      "logprobs": null,
      "finish_reason": "length",
      "stop_reason": null,
      "token_ids": null,
      "prompt_logprobs": null,
      "prompt_token_ids": null
    }
  ],
  "service_tier": null,
  "system_fingerprint": null,
  "usage": {
    "prompt_tokens": 10,
    "total_tokens": 522,
    "completion_tokens": 512,
    "prompt_tokens_details": null
  },
  "kv_transfer_params": null
}

Framework versions

  • Transformers 4.57.3
  • Pytorch 2.9.0a0+145a3a7bda.nv25.10
  • Datasets 4.4.2
  • Tokenizers 0.22.1

LLM Completions API Test Example

Overview

This test validates that continuous pretraining (CPT) successfully adapted Llama 3.1 8B to the Bikol language. The completions endpoint test serves as a sense-check to confirm the model has learned the new language's vocabulary, grammar, and patterns.

What is Continuous Pretraining?

Continuous pretraining extends a foundation model's knowledge by training on domain-specific or language-specific corpora using the same next-token prediction objective as initial pretraining. For this model:

  • Base Model: meta-llama/Llama-3.1-8B (primarily English)
  • Training Data: BalitaNLP dataset (Bikol language corpus)
  • Objective: Causal language modeling (predict next token)
  • Result: Model learns Bikol vocabulary, syntax, and cultural context while retaining general capabilities

CPT teaches the model to "speak" Bikol fluently by exposing it to thousands of Bikol text examples during training.

Next Steps: Post-Training

After validating CPT success, the next phase is post-training to make the model useful for real applications:

  1. Supervised Fine-Tuning (SFT)

    • Train on instruction-response pairs in Bikol
    • Dataset format: {"instruction": "Ano ang...", "response": "..."}
    • Teaches the model to follow instructions and answer questions
    • Example: Question answering, summarization, translation tasks
  2. Preference Alignment (RLHF/DPO)

    • Align model outputs with human preferences
    • Use Direct Preference Optimization (DPO) or RLHF
    • Dataset: Preferred vs rejected response pairs
    • Improves helpfulness, safety, and cultural appropriateness
  3. Task-Specific Fine-Tuning

    • Specialize for specific use cases (e.g., customer support, education)
    • Use LoRA/QLoRA for parameter-efficient adaptation
    • Smaller datasets (hundreds to thousands of examples)

Current Stage: ✅ CPT Complete → Testing raw language generation
Next Stage: → SFT → Instruction-following capabilities

Request

cURL Command

curl -X POST "http://localhost:8000/v1/completions" \
  -H "Content-Type: application/json" \
  --data '{
    "model": "sapinsapin/llama31-8b-halo-bikol-cpt",
    "prompt": "nasa hampang mismo kan dating planta",
    "max_tokens": 512,
    "temperature": 0.5
  }'

Python Script

#!/usr/bin/env python3
import requests
import json

def test_completions(
    base_url: str = "http://localhost:8000",
    model: str = "sapinsapin/llama31-8b-halo-bikol-cpt",
    prompt: str = "nasa hampang mismo kan dating planta",
    max_tokens: int = 512,
    temperature: float = 0.5
):
    """Test OpenAI-compatible completions endpoint"""
    url = f"{base_url}/v1/completions"
    
    payload = {
        "model": model,
        "prompt": prompt,
        "max_tokens": max_tokens,
        "temperature": temperature
    }
    
    headers = {"Content-Type": "application/json"}
    
    response = requests.post(url, headers=headers, json=payload)
    print(f"Status: {response.status_code}")
    print(f"Response:\n{json.dumps(response.json(), indent=2)}")
    
    return response.json()

if __name__ == "__main__":
    test_completions()

Response

Status

200 OK

Metadata

  • Model: sapinsapin/llama31-8b-halo-bikol-cpt
  • Request ID: cmpl-5b4eb44ef68f48f98b6e950250a40725
  • Finish Reason: length (max_tokens reached)

Token Usage

Metric Count
Prompt Tokens 10
Completion Tokens 512
Total Tokens 522

Generated Text (Bikol)

kan lamang | Magbikol Kita Saturday, December 27, , 4:14am nasa hampang mismo kan dating planta kan lamang Published on Sunday, September 13, , 6:49pm by Ernie Verdadero | Midya-Midya An sabi sako kan sarong taga-planta kan lamang, kan makatapos sya nin high school, nagpuon syang magtrabaho sa dating planta kan ilaw sa Tabaco. Planta an sabi nya kan nagkakapirang mga kontrabanderong ginatos na taon na nagtalubo duman. Alas-10 nin aga si baad na pagtanom kan mga bulong. Pigbabantayan nin mga tawong armas an mga makamurumundong bulong tanganing maibitaran an pagluwas nin mga lamang. Sarong kanto kan planta an tinrabaho nya. Duman nagpuon an saiyang pagbibyahe. Primero nang nahiling nya an malain na estado kan tinampo sa Tabaco. Saro sa mga gibo nya na nakatudan nya iyo an pagtanom nin mga kahoy. Nin huli ta haloy nang panô nin mga bulong an planta, dakol na an mga kahoy na nagtatalubo duman. Sabi nya, maski malain an buhay mo, agom mo, kaibahan mo, sa pagtanom ka sanâ. Maski magretiro na sya, dai nya mapugulan an pagtanom. Sa harong nya an sarong establisimyento duman sa Tabaco na nagtatanom nin mga orchids. Sabi ko saiya, ikagwapo iyan. Syempre, sabi nya, carampatan man nanggad. Kun ano an buót sabihon kan carampatan, yano man an buót sabihon kan gwapo. Gabos kita mabúot na tawo. Siisay an dai mabúot? Sabi ko saiya, an tawong dai mabúot iyo an tawong dai nakukuntento sa saiyang kapalibutan. Aram an tawo na dai nya mapugulan an paghanap nin paagi na makakatabang saiya tanganing mas

Full JSON Response

{
  "id": "cmpl-5b4eb44ef68f48f98b6e950250a40725",
  "object": "text_completion",
  "created": 1766879142,
  "model": "sapinsapin/llama31-8b-halo-bikol-cpt",
  "choices": [
    {
      "index": 0,
      "text": "kan lamang | Magbikol Kita Saturday, December 27, , 4:14am nasa hampang mismo kan dating planta kan lamang Published on Sunday, September 13, , 6:49pm by Ernie Verdadero | Midya-Midya An sabi sako kan sarong taga-planta kan lamang, kan makatapos sya nin high school, nagpuon syang magtrabaho sa dating planta kan ilaw sa Tabaco. Planta an sabi nya kan nagkakapirang mga kontrabanderong ginatos na taon na nagtalubo duman. Alas-10 nin aga si baad na pagtanom kan mga bulong. Pigbabantayan nin mga tawong armas an mga makamurumundong bulong tanganing maibitaran an pagluwas nin mga lamang. Sarong kanto kan planta an tinrabaho nya. Duman nagpuon an saiyang pagbibyahe. Primero nang nahiling nya an malain na estado kan tinampo sa Tabaco. Saro sa mga gibo nya na nakatudan nya iyo an pagtanom nin mga kahoy. Nin huli ta haloy nang panô nin mga bulong an planta, dakol na an mga kahoy na nagtatalubo duman. Sabi nya, maski malain an buhay mo, agom mo, kaibahan mo, sa pagtanom ka sanâ. Maski magretiro na sya, dai nya mapugulan an pagtanom. Sa harong nya an sarong establisimyento duman sa Tabaco na nagtatanom nin mga orchids. Sabi ko saiya, ikagwapo iyan. Syempre, sabi nya, carampatan man nanggad. Kun ano an buót sabihon kan carampatan, yano man an buót sabihon kan gwapo. Gabos kita mabúot na tawo. Siisay an dai mabúot? Sabi ko saiya, an tawong dai mabúot iyo an tawong dai nakukuntento sa saiyang kapalibutan. Aram an tawo na dai nya mapugulan an paghanap nin paagi na makakatabang saiya tanganing mas",
      "logprobs": null,
      "finish_reason": "length",
      "stop_reason": null
    }
  ],
  "usage": {
    "prompt_tokens": 10,
    "total_tokens": 522,
    "completion_tokens": 512
  }
}

Analysis

CPT Validation Results

Language Adaptation Confirmed

The model successfully generated coherent Bikol text about:

  • A person working at a plant facility in Tabaco
  • Their experience after high school working at a power plant
  • Planting trees and maintaining orchids
  • Philosophical reflections on contentment and good character

Key Indicators of Successful CPT:

  • Natural Bikol grammar and sentence structure
  • Proper use of Bikol-specific particles ("kan", "nin", "sa", "an")
  • Cultural context (Tabaco location, local occupations)
  • Coherent narrative flow without code-switching to English
  • Vocabulary diversity ("nagtatalubo", "makamurumundong", "establisimyento")

Limitations of CPT-Only Model

This model generates fluent Bikol text but:

  • ❌ Does not follow instructions (no instruction tuning yet)
  • ❌ Cannot answer questions in a structured way
  • ❌ May generate uncontrolled or irrelevant content
  • ❌ Lacks safety guardrails and preference alignment

Use Case: Raw text generation, data augmentation, language modeling research

Not Ready For: Chatbots, Q&A systems, production assistants (requires SFT + alignment)

Downloads last month
5
Safetensors
Model size
8B params
Tensor type
BF16
·
Inference Providers NEW
This model isn't deployed by any Inference Provider. 🙋 Ask for provider support

Model tree for sapinsapin/bikoLLM

Finetuned
(1674)
this model

Dataset used to train sapinsapin/bikoLLM

Evaluation results