HorizonNet ResNet50 + RNN (ST3D)
This repository contains pretrained weights for HorizonNet, a deep learning model for room layout estimation from 360° panorama images.
Model Details
- Architecture: ResNet50 backbone + RNN
- Training Dataset: Structured3D
- Task: Room layout estimation (wall boundaries and corners)
- Input: 360° equirectangular panorama (512x1024)
- Output: Boundary predictions (ceiling/floor) and corner predictions
Usage
import torch
from horizonnet.model import HorizonNet
# Load model
model = HorizonNet(backbone="resnet50", use_rnn=True)
checkpoint = torch.hub.load_state_dict_from_url(
"https://huggingface.co/gum-tech/horizonnet-resnet50-rnn/resolve/main/resnet50_rnn__st3d.pth",
map_location="cpu"
)
model.load_state_dict(checkpoint if not isinstance(checkpoint, dict) else checkpoint["state_dict"])
model.eval()
# Run inference
with torch.no_grad():
y_bon, y_cor = model(panorama_tensor) # [1, 3, 512, 1024]
Citation
@inproceedings{sun2019horizonnet,
title={HorizonNet: Learning Room Layout with 1D Representation and Pano Stretch Data Augmentation},
author={Sun, Cheng and Hsiao, Chi-Wei and Sun, Min and Chen, Hwann-Tzong},
booktitle={IEEE Conference on Computer Vision and Pattern Recognition (CVPR)},
year={2019}
}
Original Repository
Original implementation: sunset1995/HorizonNet
License
MIT License - See original repository for details.
Inference Providers
NEW
This model isn't deployed by any Inference Provider.
🙋
Ask for provider support