FunctionGemma 270M - Delia Dispatcher
A fine-tuned version of google/functiongemma-270m-it for Delia LLM orchestration.
This tiny model (270M params) acts as a fast dispatcher, routing user requests to the appropriate backend:
call_coder- Code generation taskscall_reviewer- Code review and analysiscall_planner- Architecture and planning (also handles ambiguous requests)call_executor- Running commands and scripts
Key Features
- Minimalist schema: Single
reasoningparameter per tool - Thought tokens: Brief CoT scratchpad before tool calls
- EOS hardening: Explicit stop tokens prevent infinite loops
- Negative samples: 13% ambiguous examples → planner (graceful handling)
- GBNF grammar: Constrained decoding for 100% valid output
Usage
With llama.cpp (recommended for speed)
# Download the GGUF
wget https://huggingface.co/devopsforflops/functiongemma-270m-delia-dispatcher/resolve/main/functiongemma-270m-delia-dispatcher-f16.gguf
# Download the grammar
wget https://huggingface.co/devopsforflops/functiongemma-270m-delia-dispatcher/resolve/main/dispatcher.gbnf
# Run with grammar constraint
./llama-cli -m functiongemma-270m-delia-dispatcher-f16.gguf \
--grammar-file dispatcher.gbnf \
-p "<start_of_turn>user
Write a fibonacci function<end_of_turn>
<start_of_turn>model"
With Transformers
from transformers import AutoModelForCausalLM, AutoTokenizer
model = AutoModelForCausalLM.from_pretrained("devopsforflops/functiongemma-270m-delia-dispatcher")
tokenizer = AutoTokenizer.from_pretrained("devopsforflops/functiongemma-270m-delia-dispatcher")
prompt = """<start_of_turn>user
Review this code for bugs<end_of_turn>
<start_of_turn>model"""
inputs = tokenizer(prompt, return_tensors="pt")
outputs = model.generate(**inputs, max_new_tokens=100)
print(tokenizer.decode(outputs[0]))
Output Format
<start_of_turn>user
{request}<end_of_turn>
<start_of_turn>model
thought
{brief reasoning}
<tool_call>{"name": "call_X", "arguments": {"reasoning": "..."}}</tool_call><end_of_turn>
Training
Fine-tuned with Unsloth using LoRA:
- Epochs: 3
- LoRA rank: 32
- Training examples: 92 (balanced across 4 tools + 13% ambiguous)
- Final loss: 0.46
Files
| File | Description |
|---|---|
functiongemma-270m-delia-dispatcher-f16.gguf |
GGUF model (F16, 518MB) |
model.safetensors |
Transformers model |
dispatcher.gbnf |
GBNF grammar for constrained decoding |
dispatcher_tools.json |
Tool schema (4 tools) |
train.jsonl |
Training data |
License
Apache 2.0 (same as base model)
Part of Delia
This model is designed for use with Delia, an LLM orchestration system that routes requests to optimal backends.
- Downloads last month
- 59
Model tree for devopsforflops/functiongemma-270m-delia-dispatcher
Base model
google/functiongemma-270m-it