Table + Text IR Evaluation
Collection
An evaluation suite created for benchmarking of retrieval models on Table+Text retrieval datasets.
•
8 items
•
Updated
qid
stringlengths 26
30
| did
stringlengths 19
110
| score
int32 1
1
|
|---|---|---|
train_-1083680136327211056_0_0
|
List_of_countries_by_total_renewable_water_resources_BD944C2B2ACBEFE9
| 1
|
train_2917736522934642870_0_0
|
Midnight,_Texas_554552077864FEDB
| 1
|
train_2090420929226937922_0_0
|
List_of_dates_for_Easter_BD5A79EEC800C93A
| 1
|
train_943011371485322102_0_0
|
Park_City,_Utah_35C727612035D578
| 1
|
train_-4342804950994743774_0_0
|
Sri_Lankan_Civil_War_60C2FAF195E76C8D
| 1
|
train_5736854479482235395_0_0
|
Sagarmatha_National_Park_2DE41F1D768721D4
| 1
|
train_8353449313006939505_0_0
|
And_Still_I_Rise_A3470AC9F65F163B
| 1
|
train_3475080409674051393_0_0
|
List_of_countries_by_homeless_population_A072E7C5A95CEDC5
| 1
|
train_-1361044712482742145_0_0
|
United_States_Senate_elections,_2018_63E57DE754C43D44
| 1
|
train_-3770005128376258808_0_0
|
iPhone_6S_DB8C5E30A29FD048
| 1
|
train_-1627287452453917939_0_0
|
2017_NCAA_Division_I_Men's_Basketball_Tournament_186CA5043C8130FF
| 1
|
train_3277202392210844477_0_0
|
Cricket_World_Cup_B28527E848B1D489
| 1
|
train_2338110276144095_0_0
|
63rd_National_Film_Awards_411460936E924ABC
| 1
|
train_4542203965420965759_0_0
|
Snow_White_and_the_Seven_Dwarfs_(1937_film)_605592F148638ACC
| 1
|
train_-48009583706115394_0_0
|
40-yard_dash_8F0B92ABE3187A07
| 1
|
train_-7536188072665054537_0_0
|
United_States_presidential_approval_rating_6E551E5DD9046C29
| 1
|
train_1591757317673895944_0_0
|
Samsung_Galaxy_Note_5_1CB32D9722E0E7DA
| 1
|
train_-6797044040053792718_0_0
|
United_States_House_of_Representatives_A3C600CB2C7E0C4B
| 1
|
train_-8806568483716688466_0_0
|
Port_St._Lucie,_Florida_4838B7F861C5447D
| 1
|
train_-2792106084015163483_0_0
|
Rick_and_Morty_(season_3)_87B29006E04900C7
| 1
|
train_9040912460744908300_0_0
|
United_States_at_the_Olympics_3DB907D8BFCF1031
| 1
|
train_-6735948273898305110_0_0
|
Robot_(Lost_in_Space)_E833B6C11AA827DB
| 1
|
train_-2066273191558715470_0_0
|
Prison_Break_(season_4)_B14D09B1EEFCDE08
| 1
|
train_4259834979883910150_0_0
|
Challenge_Cup_5C603CC7DA7AEDF1
| 1
|
train_-5655551859270743763_0_0
|
Connective_tissue_248F087EF0C50AEE
| 1
|
train_-6095377631955879126_0_0
|
List_of_La_Liga_top_scorers_81EE2D49D5C743C4
| 1
|
train_-2167917327563820692_0_0
|
Eddie_and_the_Cruisers_D105AC3756F31775
| 1
|
train_-9184816168926371714_0_0
|
List_of_American_Horror_Story_episodes_7C2B6062B3F32285
| 1
|
train_-5817469955288994961_0_0
|
2018_Big_Ten_Conference_Men's_Basketball_Tournament_13CD4C5B272978B4
| 1
|
train_-4017059945977385164_0_0
|
Harry_Potter_and_the_Philosopher's_Stone_A71B030985ABD062
| 1
|
train_4772708164879245285_0_0
|
Dinosaur_National_Monument_3E7BAA41FBFD3104
| 1
|
train_3324117148406954039_0_0
|
United_States_presidential_election,_2016_AC0A7B4A2A4FCC3
| 1
|
train_4944370295233669238_0_0
|
Oakland_Raiders_3EF40200CDDF006C
| 1
|
train_1177418755348128363_0_0
|
iPad_Air_265B957EF5176C5C
| 1
|
train_2110246901902965796_0_0
|
List_of_Olympic_medalists_in_figure_skating_6CD2E388F21EFA80
| 1
|
train_-3743752845140460199_0_0
|
Saved_by_the_Bell:_Wedding_in_Las_Vegas_7CA2D63601E956C3
| 1
|
train_6427707990755808121_0_0
|
I_Won't_Give_Up_48517DC6ED51DACA
| 1
|
train_2067067300686541089_0_0
|
List_of_Lucifer_episodes_BC2CEF38C9290E24
| 1
|
train_-8326499111006206862_0_0
|
Indian_Head_cent_15D07180DF839911
| 1
|
train_6562304557552812836_0_0
|
2015_NCAA_Division_I_Men's_Basketball_Championship_Game_1A83BA851D4AC5D7
| 1
|
train_6562304557552812836_0_0
|
2015_NCAA_Division_I_Men's_Basketball_Championship_Game_694F4EBAB6C8FA6D
| 1
|
train_2013766114741859664_0_0
|
Friends_in_Low_Places_B35B3B09CEAE50A3
| 1
|
train_-8600822423528035773_0_0
|
As_Told_by_Ginger_24D5D159436A75F
| 1
|
train_-5144857012337911560_0_0
|
List_of_most_streamed_songs_on_Spotify_B386F17BE04827FD
| 1
|
train_-9034175149218318455_0_0
|
Energy_5BF865C4BC044730
| 1
|
train_-6074299600422630296_0_0
|
List_of_SpongeBob_SquarePants_episodes_F8AC12A1BB3F2FB6
| 1
|
train_-1398607593711215503_0_0
|
Ivy_League_F1A5F6B3E9E59B25
| 1
|
train_443554557178845562_0_0
|
Suez_Canal_5BB063585E1F5548
| 1
|
train_4814277816828408246_0_0
|
Apple_TV_2B5F58A6EE887F5B
| 1
|
train_-6777100068018246408_0_0
|
Salicylate_poisoning_A14828A9F9152EB4
| 1
|
train_-9208743293887150266_0_0
|
United_States_Department_of_Defense_481AB06AF32854FD
| 1
|
train_-3694482516805219587_0_0
|
California_B9DC05FE18E2FF63
| 1
|
train_111831984286747349_0_0
|
Beaufort_scale_B8F8CB273673A464
| 1
|
train_-2031832385641804244_0_0
|
Falcon_Heavy_2BF1573A87C50A52
| 1
|
train_-8719456356483048469_0_0
|
List_of_best-selling_music_artists_AB53E63713A854EE
| 1
|
train_629645110144434820_0_0
|
Michigan–Michigan_State_football_rivalry_58EC6382F4D97044
| 1
|
train_-3273728735789734468_0_0
|
Basilica_of_Saint_Mary_(Minneapolis)_560DAAB4D79EEC70
| 1
|
train_3883426625788869768_0_0
|
Uncle_Tom's_Cabin_4407EFDC743C00B4
| 1
|
train_-3315920874493158573_0_0
|
Stranger_Things_DA96B5F2108A0CC5
| 1
|
train_3640178421252637312_0_0
|
List_of_Governors_of_Missouri_A11C7B9A40EDE8E1
| 1
|
train_-7288562121057681413_0_0
|
International_System_of_Units_7B165B364F6ACF1B
| 1
|
train_2475196988721992244_0_0
|
Figure_skating_at_the_2018_Winter_Olympics_–_Men's_singles_63D1C10198C81DAA
| 1
|
train_2475196988721992244_0_0
|
Figure_skating_at_the_2018_Winter_Olympics_–_Men's_singles_B769E8342ECCED96
| 1
|
train_-79009179653210421_0_0
|
State_Bank_of_India_CEA06874012245E4
| 1
|
train_-513423377959062495_0_0
|
List_of_most-subscribed_YouTube_channels_D1507F7867AF7018
| 1
|
train_-8651120381457272918_0_0
|
Georgia_Southern_Eagles_football_9CA811E54B75CB14
| 1
|
train_4225606747923731709_0_0
|
India_at_the_2014_Commonwealth_Games_6E213AF27B155B11
| 1
|
train_7415792613958531769_0_0
|
Battle_of_Fort_Sumter_E3E410630262245E
| 1
|
train_740595771296379568_0_0
|
Game_of_Thrones_(season_6)_571F87D1F753CC1B
| 1
|
train_-1216737595947309468_0_0
|
List_of_Oklahoma_Sooners_bowl_games_A4EC58A985F3DB43
| 1
|
train_-1634347967704321750_0_0
|
2016_Detroit_Lions_season_9907BDA35EA4047
| 1
|
train_9036390272351152131_0_0
|
Tigris_8745F3067871F101
| 1
|
train_5335464807444260742_0_0
|
Palace_of_Westminster_D145066C92F35B4F
| 1
|
train_7603668105064319228_0_0
|
2018_NFL_Draft_F5F8A24446B894F0
| 1
|
train_-3482434625885223301_0_0
|
I'm_Lovin'_It_(song)_459F9CFC1D68A870
| 1
|
train_1547085671773219043_0_0
|
College_World_Series_B5C5CD984F36215
| 1
|
train_6372179109733239045_0_0
|
Oakland_Athletics_1E6D2CBFD6F7A70D
| 1
|
train_6280232224921554210_0_0
|
War_of_1812_127AE82F64FC7CEC
| 1
|
train_641420765014827752_0_0
|
History_of_the_St._Louis_Rams_BC2DBF1CE1AA5C95
| 1
|
train_-714825372503717792_0_0
|
List_of_New_York_Knicks_seasons_8760DB7FD47A07D3
| 1
|
train_-4844328160553780966_0_0
|
Timeline_of_The_Walt_Disney_Company_45749A58C3BB15A9
| 1
|
train_4268095364459092216_0_0
|
List_of_Madam_Secretary_episodes_9FD1C0AD1C29C55A
| 1
|
train_1137824187641353603_0_0
|
Batman_and_Harley_Quinn_472D44B88C90AAF5
| 1
|
train_4552515739507918901_0_0
|
Pirates_of_the_Caribbean_(attraction)_F49E6766374C3ECA
| 1
|
train_-1814194713962028817_0_0
|
American_Idol_(season_8)_77BB81D45916730C
| 1
|
train_52378181532581320_0_0
|
List_of_best-selling_music_artists_B5E477949787BAA3
| 1
|
train_-1870138397862265432_0_0
|
The_Joker_(The_Dark_Knight)_559279D69ECE84FC
| 1
|
train_4031734096758768773_0_0
|
Saturday_Night_Live_cast_members_48C3CEADA0101658
| 1
|
train_6794388697221948544_0_0
|
Legal_status_of_tattooing_in_the_United_States_4FAB80927329466A
| 1
|
train_332530541923337089_0_0
|
United_States_presidential_line_of_succession_7479A0222CA87AC7
| 1
|
train_-2413729541426561137_0_0
|
The_Marvelous_Mrs._Maisel_5EF2CB84A5764AE6
| 1
|
train_8233282612960128828_0_0
|
A_Song_of_Ice_and_Fire_C1E12D791EEF18FC
| 1
|
train_5622255573522995449_0_0
|
The_X_Factor_(UK_series_7)_FE6F2C91B759A144
| 1
|
train_19332312892410851_0_0
|
Visa_requirements_for_Australian_citizens_B49C6C619B0244C7
| 1
|
train_-4454293534395971022_0_0
|
Truth_or_Dare_(2018_film)_51BB786165560A0C
| 1
|
train_7547989219847383340_0_0
|
Mission_San_Carlos_Borromeo_de_Carmelo_FD72E2908F33C502
| 1
|
train_-2774780599256744285_0_0
|
List_of_most_subscribed_YouTube_channels_BE9EBE7C8186FB43
| 1
|
train_-2985396307111305101_0_0
|
RuPaul's_Drag_Race_(season_1)_BF8F354BAA6BFB1D
| 1
|
train_-3412266270699019779_0_0
|
List_of_most_common_surnames_in_North_America_7EEC92CEAA91A983
| 1
|
train_57158629568519760_0_0
|
Cavaliers–Warriors_rivalry_3858BB62B72A64B0
| 1
|
This dataset is part of a Table + Text retrieval benchmark. Includes queries and relevance judgments across train, dev, test split(s), with corpus in 3 format(s): corpus_linearized, corpus_md, corpus_structure.
| Config | Description | Split(s) |
|---|---|---|
default |
Relevance judgments (qrels): qid, did, score |
train, dev, test |
queries |
Query IDs and text | train_queries, dev_queries, test_queries |
corpus_linearized |
Linearized table representation | corpus_linearized |
corpus_md |
Markdown table representation | corpus_md |
corpus_structure |
Structured corpus with headers, cells, meta_data. text field corresponds to linearized Text + Table. |
corpus_structure |
corpus_structure additional fields
| Field | Type | Description |
|---|---|---|
meta_data |
string | Table metadata / caption |
headers |
list[string] | Column headers |
cells |
list[string] | Flattened cell values |
| Dataset | Structured | #Train | #Dev | #Test | #Corpus |
|---|---|---|---|---|---|
| OpenWikiTables | ✓ | 53.8k | 6.6k | 6.6k | 24.7k |
| NQTables | ✓ | 9.6k | 1.1k | 1k | 170k |
| FeTaQA | ✓ | 7.3k | 1k | 2k | 10.3k |
| OTT-QA (small) | ✓ | 41.5k | 2.2k | -- | 8.8k |
| MultiHierTT | ✗ | -- | 929 | -- | 9.9k |
| AIT-QA | ✗ | -- | -- | 515 | 1.9k |
| StatcanRetrieval | ✗ | -- | -- | 870 | 5.9k |
| watsonxDocsQA | ✗ | -- | -- | 30 | 1.1k |
If you use TableIR Eval: Table-Text IR Evaluation Collection, please cite:
@misc{doshi2026tableir,
title = {TableIR Eval: Table-Text IR Evaluation Collection},
author = {Doshi, Meet and Boni, Odellia and Kumar, Vishwajeet and Sen, Jaydeep and Joshi, Sachindra},
year = {2026},
institution = {IBM Research},
howpublished = {https://huggingface.co/collections/ibm-research/table-text-ir-evaluation},
note = {Hugging Face dataset collection}
}
All credit goes to original authors. Please cite their work:
@inproceedings{herzig-etal-2021-open,
title = "Open Domain Question Answering over Tables via Dense Retrieval",
author = {Herzig, Jonathan and
M{\"u}ller, Thomas and
Krichene, Syrine and
Eisenschlos, Julian},
editor = "Toutanova, Kristina and
Rumshisky, Anna and
Zettlemoyer, Luke and
Hakkani-Tur, Dilek and
Beltagy, Iz and
Bethard, Steven and
Cotterell, Ryan and
Chakraborty, Tanmoy and
Zhou, Yichao",
booktitle = "Proceedings of the 2021 Conference of the North American Chapter of the Association for Computational Linguistics: Human Language Technologies",
month = jun,
year = "2021",
address = "Online",
publisher = "Association for Computational Linguistics",
url = "https://aclanthology.org/2021.naacl-main.43/",
doi = "10.18653/v1/2021.naacl-main.43",
pages = "512--519",
abstract = "Recent advances in open-domain QA have led to strong models based on dense retrieval, but only focused on retrieving textual passages. In this work, we tackle open-domain QA over tables for the first time, and show that retrieval can be improved by a retriever designed to handle tabular context. We present an effective pre-training procedure for our retriever and improve retrieval quality with mined hard negatives. As relevant datasets are missing, we extract a subset of Natural Questions (Kwiatkowski et al., 2019) into a Table QA dataset. We find that our retriever improves retrieval results from 72.0 to 81.1 recall@10 and end-to-end QA results from 33.8 to 37.7 exact match, over a BERT based retriever."
}