Datasets:
image
imagewidth (px) 640
640
|
|---|
Dataset Card for XieNet
This is the repaired version of GAPartNet dataset, which we use as the simulation dataset for Vi-TacMan.
Description
We identified numerous object meshes in the original dataset that lack proper cap geometry, so we manually repaired these meshes to ensure completeness. The following images (object id: 47296) exemplify the type of geometric defects found and our corrections:
GAPartNet (Original) |
XieNet (Repaired) |
We also provide the data generation code, which can be used to reproduce the simulated data presented in our paper Vi-TacMan.
We sincerely thank the previous works (SAPIEN, PartNet, GAPartNet) and hope our repaired dataset can help advance this community.
Usage
Installation
First, install the required dependencies:
pip install -r requirements.txt
Requirements:
- Python 3.10
- SAPIEN 3.0.1
Data Generation
The main script main.py generates simulated data by rendering articulated objects from multiple camera viewpoints with different articulation states.
Basic Usage
python main.py \
--data_root_dir /path/to/XieNet \
--save_dir /path/to/output/directory
Full Command Line Options
python main.py \
--data_root_dir /path/to/XieNet/dataset \ # Path to the XieNet dataset root
--save_dir /path/to/output/directory \ # Output directory for rendered data
--seed 42 \ # Random seed (default: 42)
--render_width 640 \ # Render width (default: 640)
--render_height 576 \ # Render height (default: 576)
--fovy 65.0 \ # Field of view in degrees (default: 65.0)
--near 0.01 \ # Near clipping plane (default: 0.01)
--far 4.0 \ # Far clipping plane (default: 4.0)
--enable_rt \ # Enable ray tracing (optional)
--min_movable_area 4096 \ # Minimum area for movable parts (default: 4096)
--max_flow_dist 0.1 \ # Maximum flow distance (default: 0.1)
--save_vis # Save visualization images (default: True)
Supported Object Categories
The data generation focuses on the following articulated object categories, for which we provide repaired meshes:
- Dishwasher
- Door
- Microwave
- Oven
- Refrigerator
- Safe
- StorageFurniture
- Table
- Toilet
- TrashCan
- WashingMachine
Output Data Format
For each object and camera viewpoint, the script generates:
pcd_camera.npy: Structured numpy array containing:point: 3D point coordinates in camera framergb: RGB color valuesarticulation_flow: 3D flow vectors for articulation motionmask_holdable: Binary mask for holdable partsmask_movable: Binary mask for movable partsmask_ground: Binary mask for ground plane
camera_pose.txt: 4x4 camera pose matrixcamera_intrinsics.txt: 3x3 camera intrinsic matrixvis/folder (if--save_visis enabled): Visualization images including color, depth, masks, and flow visualizations
Citation
If you find this dataset beneficial, please cite our research paper as follows:
@article{cui2025vitacman,
title={Vi-{T}ac{M}an: Articulated Object Manipulation via Vision and Touch},
author={Cui, Leiyao and Zhao, Zihang and Xie, Sirui and Zhang, Wenhuan and Han, Zhi and Zhu, Yixin},
journal={arXiv preprint arXiv:2510.06339},
year={2025}
}
- Downloads last month
- 140