Datasets:

Modalities:
Image
Text
Languages:
English
Size:
< 1K
ArXiv:
Libraries:
Datasets
License:
Dataset Viewer
Auto-converted to Parquet Duplicate
Search is not available for this dataset
image
imagewidth (px)
640
640

Dataset Card for XieNet

This is the repaired version of GAPartNet dataset, which we use as the simulation dataset for Vi-TacMan.

Description

We identified numerous object meshes in the original dataset that lack proper cap geometry, so we manually repaired these meshes to ensure completeness. The following images (object id: 47296) exemplify the type of geometric defects found and our corrections:

GAPartNet Original
GAPartNet (Original)
XieNet Repaired
XieNet (Repaired)

We also provide the data generation code, which can be used to reproduce the simulated data presented in our paper Vi-TacMan.

We sincerely thank the previous works (SAPIEN, PartNet, GAPartNet) and hope our repaired dataset can help advance this community.

Usage

Installation

First, install the required dependencies:

pip install -r requirements.txt

Requirements:

  • Python 3.10
  • SAPIEN 3.0.1

Data Generation

The main script main.py generates simulated data by rendering articulated objects from multiple camera viewpoints with different articulation states.

Basic Usage

python main.py \
    --data_root_dir /path/to/XieNet \
    --save_dir /path/to/output/directory

Full Command Line Options

python main.py \
    --data_root_dir /path/to/XieNet/dataset \  # Path to the XieNet dataset root
    --save_dir /path/to/output/directory \     # Output directory for rendered data
    --seed 42 \                                # Random seed (default: 42)
    --render_width 640 \                       # Render width (default: 640)
    --render_height 576 \                      # Render height (default: 576)
    --fovy 65.0 \                              # Field of view in degrees (default: 65.0)
    --near 0.01 \                              # Near clipping plane (default: 0.01)
    --far 4.0 \                                # Far clipping plane (default: 4.0)
    --enable_rt \                              # Enable ray tracing (optional)
    --min_movable_area 4096 \                  # Minimum area for movable parts (default: 4096)
    --max_flow_dist 0.1 \                      # Maximum flow distance (default: 0.1)
    --save_vis                                 # Save visualization images (default: True)

Supported Object Categories

The data generation focuses on the following articulated object categories, for which we provide repaired meshes:

  • Dishwasher
  • Door
  • Microwave
  • Oven
  • Refrigerator
  • Safe
  • StorageFurniture
  • Table
  • Toilet
  • TrashCan
  • WashingMachine

Output Data Format

For each object and camera viewpoint, the script generates:

  • pcd_camera.npy: Structured numpy array containing:
    • point: 3D point coordinates in camera frame
    • rgb: RGB color values
    • articulation_flow: 3D flow vectors for articulation motion
    • mask_holdable: Binary mask for holdable parts
    • mask_movable: Binary mask for movable parts
    • mask_ground: Binary mask for ground plane
  • camera_pose.txt: 4x4 camera pose matrix
  • camera_intrinsics.txt: 3x3 camera intrinsic matrix
  • vis/ folder (if --save_vis is enabled): Visualization images including color, depth, masks, and flow visualizations

Citation

If you find this dataset beneficial, please cite our research paper as follows:

@article{cui2025vitacman,
    title={Vi-{T}ac{M}an: Articulated Object Manipulation via Vision and Touch},
    author={Cui, Leiyao and Zhao, Zihang and Xie, Sirui and Zhang, Wenhuan and Han, Zhi and Zhu, Yixin},
    journal={arXiv preprint arXiv:2510.06339},
    year={2025}
}
Downloads last month
140