Visualize in Weights & Biases

exceptions_exp2_swap_0.7_last_to_hit_40817

This model is a fine-tuned version of on an unknown dataset. It achieves the following results on the evaluation set:

  • Loss: 3.5634
  • Accuracy: 0.3687

Model description

More information needed

Intended uses & limitations

More information needed

Training and evaluation data

More information needed

Training procedure

Training hyperparameters

The following hyperparameters were used during training:

  • learning_rate: 0.0006
  • train_batch_size: 16
  • eval_batch_size: 16
  • seed: 40817
  • gradient_accumulation_steps: 5
  • total_train_batch_size: 80
  • optimizer: Use OptimizerNames.ADAMW_TORCH_FUSED with betas=(0.9,0.98) and epsilon=1e-08 and optimizer_args=No additional optimizer arguments
  • lr_scheduler_type: linear
  • lr_scheduler_warmup_steps: 100
  • num_epochs: 50.0
  • mixed_precision_training: Native AMP

Training results

Training Loss Epoch Step Accuracy Validation Loss
4.82 0.2915 1000 0.2546 4.7491
4.3452 0.5830 2000 0.2995 4.2827
4.1511 0.8745 3000 0.3149 4.1005
4.0159 1.1659 4000 0.3246 3.9934
3.9427 1.4574 5000 0.3316 3.9212
3.8685 1.7489 6000 0.3363 3.8624
3.7477 2.0402 7000 0.3407 3.8195
3.7461 2.3317 8000 0.3436 3.7886
3.7386 2.6233 9000 0.3461 3.7604
3.7339 2.9148 10000 0.3488 3.7331
3.6372 3.2061 11000 0.3506 3.7208
3.6421 3.4976 12000 0.3522 3.7021
3.6399 3.7891 13000 0.3540 3.6850
3.5387 4.0805 14000 0.3549 3.6801
3.5763 4.3720 15000 0.3564 3.6654
3.5914 4.6635 16000 0.3574 3.6534
3.5959 4.9550 17000 0.3590 3.6384
3.5027 5.2463 18000 0.3594 3.6431
3.5203 5.5378 19000 0.3602 3.6316
3.5458 5.8293 20000 0.3610 3.6181
3.4446 6.1207 21000 0.3617 3.6232
3.4736 6.4122 22000 0.3623 3.6165
3.4812 6.7037 23000 0.3628 3.6074
3.493 6.9952 24000 0.3639 3.5957
3.4286 7.2866 25000 0.3640 3.6034
3.4475 7.5781 26000 0.3644 3.5973
3.4659 7.8696 27000 0.3653 3.5870
3.3908 8.1609 28000 0.3649 3.5949
3.4168 8.4524 29000 0.3653 3.5919
3.4338 8.7439 30000 0.3663 3.5821
3.3249 9.0353 31000 0.3661 3.5867
3.3866 9.3268 32000 0.3665 3.5841
3.4114 9.6183 33000 0.3671 3.5765
3.4155 9.9098 34000 0.3676 3.5680
3.3406 10.2011 35000 0.3673 3.5785
3.3818 10.4927 36000 0.3679 3.5723
3.3918 10.7842 37000 0.3686 3.5650
3.2962 11.0755 38000 0.3680 3.5764
3.3402 11.3670 39000 0.3684 3.5720
3.3688 11.6585 40000 0.3687 3.5634
3.3751 11.9500 41000 0.3695 3.5535
3.3316 12.2414 42000 0.3684 3.5711
3.3401 12.5329 43000 0.3694 3.5637
3.3441 12.8244 44000 0.3698 3.5547
3.2688 13.1157 45000 0.3695 3.5672
3.3015 13.4072 46000 0.3699 3.5612
3.3412 13.6988 47000 0.3704 3.5539
3.348 13.9903 48000 0.3707 3.5471
3.2793 14.2816 49000 0.3699 3.5617
3.302 14.5731 50000 0.3707 3.5510
3.3196 14.8646 51000 0.3709 3.5470
3.2517 15.1560 52000 0.3703 3.5652
3.282 15.4475 53000 0.3709 3.5575
3.3025 15.7390 54000 0.3712 3.5482
3.2162 16.0303 55000 0.3710 3.5597
3.2625 16.3218 56000 0.3709 3.5593
3.2817 16.6133 57000 0.3715 3.5498
3.3056 16.9049 58000 0.3723 3.5401
3.2195 17.1962 59000 0.3711 3.5591
3.267 17.4877 60000 0.3718 3.5491
3.2985 17.7792 61000 0.3721 3.5426
3.1927 18.0705 62000 0.3714 3.5552
3.2428 18.3621 63000 0.3715 3.5540
3.2681 18.6536 64000 0.3719 3.5466
3.2754 18.9451 65000 0.3727 3.5389
3.2074 19.2364 66000 0.3719 3.5573
3.2401 19.5279 67000 0.3721 3.5492
3.257 19.8194 68000 0.3725 3.5415
3.1764 20.1108 69000 0.3722 3.5544
3.2093 20.4023 70000 0.3724 3.5530
3.2427 20.6938 71000 0.3727 3.5470
3.2435 20.9853 72000 0.3735 3.5348
3.1998 21.2766 73000 0.3723 3.5532
3.2156 21.5682 74000 0.3728 3.5487
3.2468 21.8597 75000 0.3733 3.5367
3.174 22.1510 76000 0.3723 3.5572
3.2102 22.4425 77000 0.3726 3.5492
3.2254 22.7340 78000 0.3735 3.5386
3.1307 23.0254 79000 0.3730 3.5528
3.1952 23.3169 80000 0.3727 3.5524
3.1882 23.6084 81000 3.5551 0.3726
3.2042 23.8999 82000 3.5464 0.3731
3.1701 24.1915 83000 3.5567 0.3728
3.1877 24.4830 84000 3.5519 0.3730
3.2204 24.7745 85000 3.5413 0.3737
3.13 25.0659 86000 3.5559 0.3730
3.1678 25.3574 87000 3.5530 0.3731
3.1946 25.6489 88000 3.5448 0.3736
3.2083 25.9404 89000 3.5375 0.3741
3.1252 26.2318 90000 3.5572 0.3735
3.1743 26.5233 91000 3.5456 0.3737
3.1933 26.8148 92000 3.5410 0.3740
3.1236 27.1061 93000 3.5582 0.3728
3.1469 27.3976 94000 3.5510 0.3736
3.1768 27.6891 95000 3.5412 0.3739
3.1761 27.9806 96000 3.5355 0.3746
3.1261 28.2720 97000 3.5564 0.3734
3.1522 28.5635 98000 3.5489 0.3739
3.1705 28.8550 99000 3.5439 0.3743
3.1081 29.1463 100000 3.5558 0.3736

Framework versions

  • Transformers 4.55.2
  • Pytorch 2.8.0+cu128
  • Datasets 4.0.0
  • Tokenizers 0.21.4
Downloads last month
18
Safetensors
Model size
0.1B params
Tensor type
F32
ยท
Inference Providers NEW
This model isn't deployed by any Inference Provider. ๐Ÿ™‹ Ask for provider support

Evaluation results