exceptions_exp2_swap_0.7_last_to_hit_40817
This model is a fine-tuned version of on an unknown dataset. It achieves the following results on the evaluation set:
- Loss: 3.5634
- Accuracy: 0.3687
Model description
More information needed
Intended uses & limitations
More information needed
Training and evaluation data
More information needed
Training procedure
Training hyperparameters
The following hyperparameters were used during training:
- learning_rate: 0.0006
- train_batch_size: 16
- eval_batch_size: 16
- seed: 40817
- gradient_accumulation_steps: 5
- total_train_batch_size: 80
- optimizer: Use OptimizerNames.ADAMW_TORCH_FUSED with betas=(0.9,0.98) and epsilon=1e-08 and optimizer_args=No additional optimizer arguments
- lr_scheduler_type: linear
- lr_scheduler_warmup_steps: 100
- num_epochs: 50.0
- mixed_precision_training: Native AMP
Training results
| Training Loss | Epoch | Step | Accuracy | Validation Loss |
|---|---|---|---|---|
| 4.82 | 0.2915 | 1000 | 0.2546 | 4.7491 |
| 4.3452 | 0.5830 | 2000 | 0.2995 | 4.2827 |
| 4.1511 | 0.8745 | 3000 | 0.3149 | 4.1005 |
| 4.0159 | 1.1659 | 4000 | 0.3246 | 3.9934 |
| 3.9427 | 1.4574 | 5000 | 0.3316 | 3.9212 |
| 3.8685 | 1.7489 | 6000 | 0.3363 | 3.8624 |
| 3.7477 | 2.0402 | 7000 | 0.3407 | 3.8195 |
| 3.7461 | 2.3317 | 8000 | 0.3436 | 3.7886 |
| 3.7386 | 2.6233 | 9000 | 0.3461 | 3.7604 |
| 3.7339 | 2.9148 | 10000 | 0.3488 | 3.7331 |
| 3.6372 | 3.2061 | 11000 | 0.3506 | 3.7208 |
| 3.6421 | 3.4976 | 12000 | 0.3522 | 3.7021 |
| 3.6399 | 3.7891 | 13000 | 0.3540 | 3.6850 |
| 3.5387 | 4.0805 | 14000 | 0.3549 | 3.6801 |
| 3.5763 | 4.3720 | 15000 | 0.3564 | 3.6654 |
| 3.5914 | 4.6635 | 16000 | 0.3574 | 3.6534 |
| 3.5959 | 4.9550 | 17000 | 0.3590 | 3.6384 |
| 3.5027 | 5.2463 | 18000 | 0.3594 | 3.6431 |
| 3.5203 | 5.5378 | 19000 | 0.3602 | 3.6316 |
| 3.5458 | 5.8293 | 20000 | 0.3610 | 3.6181 |
| 3.4446 | 6.1207 | 21000 | 0.3617 | 3.6232 |
| 3.4736 | 6.4122 | 22000 | 0.3623 | 3.6165 |
| 3.4812 | 6.7037 | 23000 | 0.3628 | 3.6074 |
| 3.493 | 6.9952 | 24000 | 0.3639 | 3.5957 |
| 3.4286 | 7.2866 | 25000 | 0.3640 | 3.6034 |
| 3.4475 | 7.5781 | 26000 | 0.3644 | 3.5973 |
| 3.4659 | 7.8696 | 27000 | 0.3653 | 3.5870 |
| 3.3908 | 8.1609 | 28000 | 0.3649 | 3.5949 |
| 3.4168 | 8.4524 | 29000 | 0.3653 | 3.5919 |
| 3.4338 | 8.7439 | 30000 | 0.3663 | 3.5821 |
| 3.3249 | 9.0353 | 31000 | 0.3661 | 3.5867 |
| 3.3866 | 9.3268 | 32000 | 0.3665 | 3.5841 |
| 3.4114 | 9.6183 | 33000 | 0.3671 | 3.5765 |
| 3.4155 | 9.9098 | 34000 | 0.3676 | 3.5680 |
| 3.3406 | 10.2011 | 35000 | 0.3673 | 3.5785 |
| 3.3818 | 10.4927 | 36000 | 0.3679 | 3.5723 |
| 3.3918 | 10.7842 | 37000 | 0.3686 | 3.5650 |
| 3.2962 | 11.0755 | 38000 | 0.3680 | 3.5764 |
| 3.3402 | 11.3670 | 39000 | 0.3684 | 3.5720 |
| 3.3688 | 11.6585 | 40000 | 0.3687 | 3.5634 |
| 3.3751 | 11.9500 | 41000 | 0.3695 | 3.5535 |
| 3.3316 | 12.2414 | 42000 | 0.3684 | 3.5711 |
| 3.3401 | 12.5329 | 43000 | 0.3694 | 3.5637 |
| 3.3441 | 12.8244 | 44000 | 0.3698 | 3.5547 |
| 3.2688 | 13.1157 | 45000 | 0.3695 | 3.5672 |
| 3.3015 | 13.4072 | 46000 | 0.3699 | 3.5612 |
| 3.3412 | 13.6988 | 47000 | 0.3704 | 3.5539 |
| 3.348 | 13.9903 | 48000 | 0.3707 | 3.5471 |
| 3.2793 | 14.2816 | 49000 | 0.3699 | 3.5617 |
| 3.302 | 14.5731 | 50000 | 0.3707 | 3.5510 |
| 3.3196 | 14.8646 | 51000 | 0.3709 | 3.5470 |
| 3.2517 | 15.1560 | 52000 | 0.3703 | 3.5652 |
| 3.282 | 15.4475 | 53000 | 0.3709 | 3.5575 |
| 3.3025 | 15.7390 | 54000 | 0.3712 | 3.5482 |
| 3.2162 | 16.0303 | 55000 | 0.3710 | 3.5597 |
| 3.2625 | 16.3218 | 56000 | 0.3709 | 3.5593 |
| 3.2817 | 16.6133 | 57000 | 0.3715 | 3.5498 |
| 3.3056 | 16.9049 | 58000 | 0.3723 | 3.5401 |
| 3.2195 | 17.1962 | 59000 | 0.3711 | 3.5591 |
| 3.267 | 17.4877 | 60000 | 0.3718 | 3.5491 |
| 3.2985 | 17.7792 | 61000 | 0.3721 | 3.5426 |
| 3.1927 | 18.0705 | 62000 | 0.3714 | 3.5552 |
| 3.2428 | 18.3621 | 63000 | 0.3715 | 3.5540 |
| 3.2681 | 18.6536 | 64000 | 0.3719 | 3.5466 |
| 3.2754 | 18.9451 | 65000 | 0.3727 | 3.5389 |
| 3.2074 | 19.2364 | 66000 | 0.3719 | 3.5573 |
| 3.2401 | 19.5279 | 67000 | 0.3721 | 3.5492 |
| 3.257 | 19.8194 | 68000 | 0.3725 | 3.5415 |
| 3.1764 | 20.1108 | 69000 | 0.3722 | 3.5544 |
| 3.2093 | 20.4023 | 70000 | 0.3724 | 3.5530 |
| 3.2427 | 20.6938 | 71000 | 0.3727 | 3.5470 |
| 3.2435 | 20.9853 | 72000 | 0.3735 | 3.5348 |
| 3.1998 | 21.2766 | 73000 | 0.3723 | 3.5532 |
| 3.2156 | 21.5682 | 74000 | 0.3728 | 3.5487 |
| 3.2468 | 21.8597 | 75000 | 0.3733 | 3.5367 |
| 3.174 | 22.1510 | 76000 | 0.3723 | 3.5572 |
| 3.2102 | 22.4425 | 77000 | 0.3726 | 3.5492 |
| 3.2254 | 22.7340 | 78000 | 0.3735 | 3.5386 |
| 3.1307 | 23.0254 | 79000 | 0.3730 | 3.5528 |
| 3.1952 | 23.3169 | 80000 | 0.3727 | 3.5524 |
| 3.1882 | 23.6084 | 81000 | 3.5551 | 0.3726 |
| 3.2042 | 23.8999 | 82000 | 3.5464 | 0.3731 |
| 3.1701 | 24.1915 | 83000 | 3.5567 | 0.3728 |
| 3.1877 | 24.4830 | 84000 | 3.5519 | 0.3730 |
| 3.2204 | 24.7745 | 85000 | 3.5413 | 0.3737 |
| 3.13 | 25.0659 | 86000 | 3.5559 | 0.3730 |
| 3.1678 | 25.3574 | 87000 | 3.5530 | 0.3731 |
| 3.1946 | 25.6489 | 88000 | 3.5448 | 0.3736 |
| 3.2083 | 25.9404 | 89000 | 3.5375 | 0.3741 |
| 3.1252 | 26.2318 | 90000 | 3.5572 | 0.3735 |
| 3.1743 | 26.5233 | 91000 | 3.5456 | 0.3737 |
| 3.1933 | 26.8148 | 92000 | 3.5410 | 0.3740 |
| 3.1236 | 27.1061 | 93000 | 3.5582 | 0.3728 |
| 3.1469 | 27.3976 | 94000 | 3.5510 | 0.3736 |
| 3.1768 | 27.6891 | 95000 | 3.5412 | 0.3739 |
| 3.1761 | 27.9806 | 96000 | 3.5355 | 0.3746 |
| 3.1261 | 28.2720 | 97000 | 3.5564 | 0.3734 |
| 3.1522 | 28.5635 | 98000 | 3.5489 | 0.3739 |
| 3.1705 | 28.8550 | 99000 | 3.5439 | 0.3743 |
| 3.1081 | 29.1463 | 100000 | 3.5558 | 0.3736 |
Framework versions
- Transformers 4.55.2
- Pytorch 2.8.0+cu128
- Datasets 4.0.0
- Tokenizers 0.21.4
- Downloads last month
- 18