exceptions_exp2_swap_0.7_cost_to_drop_3591
This model is a fine-tuned version of on an unknown dataset. It achieves the following results on the evaluation set:
- Loss: 3.5619
- Accuracy: 0.3686
Model description
More information needed
Intended uses & limitations
More information needed
Training and evaluation data
More information needed
Training procedure
Training hyperparameters
The following hyperparameters were used during training:
- learning_rate: 0.0006
- train_batch_size: 16
- eval_batch_size: 16
- seed: 3591
- gradient_accumulation_steps: 5
- total_train_batch_size: 80
- optimizer: Use OptimizerNames.ADAMW_TORCH_FUSED with betas=(0.9,0.98) and epsilon=1e-08 and optimizer_args=No additional optimizer arguments
- lr_scheduler_type: linear
- lr_scheduler_warmup_steps: 100
- num_epochs: 50.0
- mixed_precision_training: Native AMP
Training results
| Training Loss | Epoch | Step | Validation Loss | Accuracy |
|---|---|---|---|---|
| 4.835 | 0.2917 | 1000 | 4.7704 | 0.2526 |
| 4.3512 | 0.5834 | 2000 | 4.3124 | 0.2959 |
| 4.1459 | 0.8750 | 3000 | 4.1042 | 0.3147 |
| 4.0078 | 1.1665 | 4000 | 3.9969 | 0.3246 |
| 3.9464 | 1.4582 | 5000 | 3.9193 | 0.3315 |
| 3.889 | 1.7499 | 6000 | 3.8639 | 0.3358 |
| 3.7504 | 2.0414 | 7000 | 3.8208 | 0.3403 |
| 3.7607 | 2.3331 | 8000 | 3.7887 | 0.3435 |
| 3.7413 | 2.6248 | 9000 | 3.7623 | 0.3462 |
| 3.7293 | 2.9165 | 10000 | 3.7337 | 0.3489 |
| 3.638 | 3.2080 | 11000 | 3.7221 | 0.3506 |
| 3.6592 | 3.4996 | 12000 | 3.7048 | 0.3522 |
| 3.6431 | 3.7913 | 13000 | 3.6850 | 0.3539 |
| 3.5445 | 4.0828 | 14000 | 3.6794 | 0.3553 |
| 3.5688 | 4.3745 | 15000 | 3.6655 | 0.3563 |
| 3.5873 | 4.6662 | 16000 | 3.6520 | 0.3573 |
| 3.5797 | 4.9579 | 17000 | 3.6393 | 0.3589 |
| 3.5144 | 5.2494 | 18000 | 3.6441 | 0.3590 |
| 3.5162 | 5.5411 | 19000 | 3.6342 | 0.3599 |
| 3.5266 | 5.8327 | 20000 | 3.6187 | 0.3610 |
| 3.4539 | 6.1243 | 21000 | 3.6223 | 0.3614 |
| 3.47 | 6.4159 | 22000 | 3.6185 | 0.3618 |
| 3.5045 | 6.7076 | 23000 | 3.6057 | 0.3625 |
| 3.5014 | 6.9993 | 24000 | 3.5971 | 0.3636 |
| 3.4255 | 7.2908 | 25000 | 3.6058 | 0.3636 |
| 3.4496 | 7.5825 | 26000 | 3.5968 | 0.3641 |
| 3.4667 | 7.8742 | 27000 | 3.5864 | 0.3648 |
| 3.3911 | 8.1657 | 28000 | 3.5957 | 0.3646 |
| 3.4147 | 8.4574 | 29000 | 3.5920 | 0.3655 |
| 3.426 | 8.7490 | 30000 | 3.5799 | 0.3663 |
| 3.3349 | 9.0405 | 31000 | 3.5879 | 0.3658 |
| 3.3836 | 9.3322 | 32000 | 3.5822 | 0.3664 |
| 3.4077 | 9.6239 | 33000 | 3.5754 | 0.3672 |
| 3.4157 | 9.9156 | 34000 | 3.5676 | 0.3673 |
| 3.3426 | 10.2071 | 35000 | 3.5795 | 0.3671 |
| 3.3893 | 10.4988 | 36000 | 3.5745 | 0.3674 |
| 3.3835 | 10.7905 | 37000 | 3.5636 | 0.3681 |
| 3.3097 | 11.0820 | 38000 | 3.5755 | 0.3679 |
| 3.3484 | 11.3736 | 39000 | 3.5725 | 0.3682 |
| 3.3763 | 11.6653 | 40000 | 3.5619 | 0.3686 |
| 3.3878 | 11.9570 | 41000 | 3.5606 | 0.3688 |
| 3.3151 | 12.2485 | 42000 | 3.5704 | 0.3686 |
| 3.3447 | 12.5402 | 43000 | 3.5646 | 0.3689 |
| 3.3503 | 12.8319 | 44000 | 3.5543 | 0.3698 |
| 3.2791 | 13.1234 | 45000 | 3.5685 | 0.3690 |
| 3.31 | 13.4151 | 46000 | 3.5601 | 0.3697 |
| 3.3436 | 13.7067 | 47000 | 3.5543 | 0.3698 |
| 3.3556 | 13.9984 | 48000 | 3.5473 | 0.3703 |
| 3.2895 | 14.2899 | 49000 | 3.5658 | 0.3698 |
| 3.309 | 14.5816 | 50000 | 3.5560 | 0.3703 |
| 3.3168 | 14.8733 | 51000 | 3.5482 | 0.3710 |
| 3.2611 | 15.1648 | 52000 | 3.5602 | 0.3704 |
| 3.2905 | 15.4565 | 53000 | 3.5574 | 0.3704 |
| 3.3029 | 15.7482 | 54000 | 3.5492 | 0.3708 |
| 3.2225 | 16.0397 | 55000 | 3.5563 | 0.3707 |
| 3.2666 | 16.3313 | 56000 | 3.5596 | 0.3708 |
| 3.2867 | 16.6230 | 57000 | 3.5492 | 0.3711 |
| 3.3176 | 16.9147 | 58000 | 3.5460 | 0.3713 |
| 3.2324 | 17.2062 | 59000 | 3.5595 | 0.3712 |
| 3.2587 | 17.4979 | 60000 | 3.5506 | 0.3713 |
| 3.2939 | 17.7896 | 61000 | 3.5454 | 0.3719 |
| 3.1992 | 18.0811 | 62000 | 3.5591 | 0.3713 |
| 3.2413 | 18.3728 | 63000 | 3.5531 | 0.3717 |
| 3.2612 | 18.6644 | 64000 | 3.5446 | 0.3721 |
| 3.2832 | 18.9561 | 65000 | 3.5411 | 0.3722 |
| 3.2237 | 19.2476 | 66000 | 3.5550 | 0.3720 |
| 3.2504 | 19.5393 | 67000 | 3.5508 | 0.3721 |
| 3.2634 | 19.8310 | 68000 | 3.5415 | 0.3726 |
| 3.197 | 20.1225 | 69000 | 3.5563 | 0.3720 |
| 3.2182 | 20.4142 | 70000 | 3.5507 | 0.3724 |
| 3.2436 | 20.7059 | 71000 | 3.5461 | 0.3723 |
| 3.2767 | 20.9975 | 72000 | 3.5382 | 0.3730 |
| 3.2042 | 21.2891 | 73000 | 3.5563 | 0.3721 |
| 3.2353 | 21.5807 | 74000 | 3.5465 | 0.3727 |
| 3.251 | 21.8724 | 75000 | 3.5390 | 0.3735 |
| 3.1873 | 22.1639 | 76000 | 3.5566 | 0.3721 |
| 3.192 | 22.4556 | 77000 | 3.5509 | 0.3726 |
| 3.2381 | 22.7473 | 78000 | 3.5424 | 0.3730 |
| 3.149 | 23.0388 | 79000 | 3.5557 | 0.3725 |
| 3.1865 | 23.3305 | 80000 | 3.5533 | 0.3725 |
| 3.2052 | 23.6222 | 81000 | 3.5478 | 0.3733 |
| 3.2326 | 23.9138 | 82000 | 3.5392 | 0.3736 |
| 3.1671 | 24.2053 | 83000 | 3.5582 | 0.3726 |
| 3.203 | 24.4970 | 84000 | 3.5528 | 0.3729 |
| 3.2203 | 24.7887 | 85000 | 3.5400 | 0.3738 |
| 3.1422 | 25.0802 | 86000 | 3.5552 | 0.3730 |
| 3.1736 | 25.3719 | 87000 | 3.5526 | 0.3729 |
| 3.1953 | 25.6636 | 88000 | 3.5439 | 0.3735 |
| 3.2109 | 25.9553 | 89000 | 3.5411 | 0.3739 |
| 3.1591 | 26.2468 | 90000 | 3.5548 | 0.3731 |
| 3.194 | 26.5384 | 91000 | 3.5473 | 0.3733 |
| 3.1994 | 26.8301 | 92000 | 3.5448 | 0.3742 |
Framework versions
- Transformers 4.55.2
- Pytorch 2.8.0+cu128
- Datasets 4.0.0
- Tokenizers 0.21.4
- Downloads last month
- 17