Visualize in Weights & Biases

exceptions_exp2_swap_0.7_cost_to_drop_3591

This model is a fine-tuned version of on an unknown dataset. It achieves the following results on the evaluation set:

  • Loss: 3.5619
  • Accuracy: 0.3686

Model description

More information needed

Intended uses & limitations

More information needed

Training and evaluation data

More information needed

Training procedure

Training hyperparameters

The following hyperparameters were used during training:

  • learning_rate: 0.0006
  • train_batch_size: 16
  • eval_batch_size: 16
  • seed: 3591
  • gradient_accumulation_steps: 5
  • total_train_batch_size: 80
  • optimizer: Use OptimizerNames.ADAMW_TORCH_FUSED with betas=(0.9,0.98) and epsilon=1e-08 and optimizer_args=No additional optimizer arguments
  • lr_scheduler_type: linear
  • lr_scheduler_warmup_steps: 100
  • num_epochs: 50.0
  • mixed_precision_training: Native AMP

Training results

Training Loss Epoch Step Validation Loss Accuracy
4.835 0.2917 1000 4.7704 0.2526
4.3512 0.5834 2000 4.3124 0.2959
4.1459 0.8750 3000 4.1042 0.3147
4.0078 1.1665 4000 3.9969 0.3246
3.9464 1.4582 5000 3.9193 0.3315
3.889 1.7499 6000 3.8639 0.3358
3.7504 2.0414 7000 3.8208 0.3403
3.7607 2.3331 8000 3.7887 0.3435
3.7413 2.6248 9000 3.7623 0.3462
3.7293 2.9165 10000 3.7337 0.3489
3.638 3.2080 11000 3.7221 0.3506
3.6592 3.4996 12000 3.7048 0.3522
3.6431 3.7913 13000 3.6850 0.3539
3.5445 4.0828 14000 3.6794 0.3553
3.5688 4.3745 15000 3.6655 0.3563
3.5873 4.6662 16000 3.6520 0.3573
3.5797 4.9579 17000 3.6393 0.3589
3.5144 5.2494 18000 3.6441 0.3590
3.5162 5.5411 19000 3.6342 0.3599
3.5266 5.8327 20000 3.6187 0.3610
3.4539 6.1243 21000 3.6223 0.3614
3.47 6.4159 22000 3.6185 0.3618
3.5045 6.7076 23000 3.6057 0.3625
3.5014 6.9993 24000 3.5971 0.3636
3.4255 7.2908 25000 3.6058 0.3636
3.4496 7.5825 26000 3.5968 0.3641
3.4667 7.8742 27000 3.5864 0.3648
3.3911 8.1657 28000 3.5957 0.3646
3.4147 8.4574 29000 3.5920 0.3655
3.426 8.7490 30000 3.5799 0.3663
3.3349 9.0405 31000 3.5879 0.3658
3.3836 9.3322 32000 3.5822 0.3664
3.4077 9.6239 33000 3.5754 0.3672
3.4157 9.9156 34000 3.5676 0.3673
3.3426 10.2071 35000 3.5795 0.3671
3.3893 10.4988 36000 3.5745 0.3674
3.3835 10.7905 37000 3.5636 0.3681
3.3097 11.0820 38000 3.5755 0.3679
3.3484 11.3736 39000 3.5725 0.3682
3.3763 11.6653 40000 3.5619 0.3686
3.3878 11.9570 41000 3.5606 0.3688
3.3151 12.2485 42000 3.5704 0.3686
3.3447 12.5402 43000 3.5646 0.3689
3.3503 12.8319 44000 3.5543 0.3698
3.2791 13.1234 45000 3.5685 0.3690
3.31 13.4151 46000 3.5601 0.3697
3.3436 13.7067 47000 3.5543 0.3698
3.3556 13.9984 48000 3.5473 0.3703
3.2895 14.2899 49000 3.5658 0.3698
3.309 14.5816 50000 3.5560 0.3703
3.3168 14.8733 51000 3.5482 0.3710
3.2611 15.1648 52000 3.5602 0.3704
3.2905 15.4565 53000 3.5574 0.3704
3.3029 15.7482 54000 3.5492 0.3708
3.2225 16.0397 55000 3.5563 0.3707
3.2666 16.3313 56000 3.5596 0.3708
3.2867 16.6230 57000 3.5492 0.3711
3.3176 16.9147 58000 3.5460 0.3713
3.2324 17.2062 59000 3.5595 0.3712
3.2587 17.4979 60000 3.5506 0.3713
3.2939 17.7896 61000 3.5454 0.3719
3.1992 18.0811 62000 3.5591 0.3713
3.2413 18.3728 63000 3.5531 0.3717
3.2612 18.6644 64000 3.5446 0.3721
3.2832 18.9561 65000 3.5411 0.3722
3.2237 19.2476 66000 3.5550 0.3720
3.2504 19.5393 67000 3.5508 0.3721
3.2634 19.8310 68000 3.5415 0.3726
3.197 20.1225 69000 3.5563 0.3720
3.2182 20.4142 70000 3.5507 0.3724
3.2436 20.7059 71000 3.5461 0.3723
3.2767 20.9975 72000 3.5382 0.3730
3.2042 21.2891 73000 3.5563 0.3721
3.2353 21.5807 74000 3.5465 0.3727
3.251 21.8724 75000 3.5390 0.3735
3.1873 22.1639 76000 3.5566 0.3721
3.192 22.4556 77000 3.5509 0.3726
3.2381 22.7473 78000 3.5424 0.3730
3.149 23.0388 79000 3.5557 0.3725
3.1865 23.3305 80000 3.5533 0.3725
3.2052 23.6222 81000 3.5478 0.3733
3.2326 23.9138 82000 3.5392 0.3736
3.1671 24.2053 83000 3.5582 0.3726
3.203 24.4970 84000 3.5528 0.3729
3.2203 24.7887 85000 3.5400 0.3738
3.1422 25.0802 86000 3.5552 0.3730
3.1736 25.3719 87000 3.5526 0.3729
3.1953 25.6636 88000 3.5439 0.3735
3.2109 25.9553 89000 3.5411 0.3739
3.1591 26.2468 90000 3.5548 0.3731
3.194 26.5384 91000 3.5473 0.3733
3.1994 26.8301 92000 3.5448 0.3742

Framework versions

  • Transformers 4.55.2
  • Pytorch 2.8.0+cu128
  • Datasets 4.0.0
  • Tokenizers 0.21.4
Downloads last month
17
Safetensors
Model size
0.1B params
Tensor type
F32
·
Inference Providers NEW
This model isn't deployed by any Inference Provider. 🙋 Ask for provider support

Evaluation results