Visualize in Weights & Biases

exceptions_exp2_swap_0.3_resemble_to_hit_2128

This model is a fine-tuned version of on an unknown dataset. It achieves the following results on the evaluation set:

  • Loss: 3.5633
  • Accuracy: 0.3687

Model description

More information needed

Intended uses & limitations

More information needed

Training and evaluation data

More information needed

Training procedure

Training hyperparameters

The following hyperparameters were used during training:

  • learning_rate: 0.0006
  • train_batch_size: 16
  • eval_batch_size: 16
  • seed: 2128
  • gradient_accumulation_steps: 5
  • total_train_batch_size: 80
  • optimizer: Use OptimizerNames.ADAMW_TORCH_FUSED with betas=(0.9,0.98) and epsilon=1e-08 and optimizer_args=No additional optimizer arguments
  • lr_scheduler_type: linear
  • lr_scheduler_warmup_steps: 100
  • num_epochs: 50.0
  • mixed_precision_training: Native AMP

Training results

Training Loss Epoch Step Accuracy Validation Loss
4.815 0.2915 1000 0.2535 4.7594
4.3399 0.5830 2000 0.2990 4.2841
4.152 0.8745 3000 0.3144 4.1015
3.9962 1.1659 4000 0.3243 3.9958
3.9504 1.4574 5000 0.3304 3.9211
3.8819 1.7488 6000 0.3360 3.8620
3.7462 2.0402 7000 0.3405 3.8210
3.7613 2.3317 8000 0.3436 3.7897
3.7417 2.6232 9000 0.3462 3.7610
3.7271 2.9147 10000 0.3484 3.7343
3.6424 3.2061 11000 0.3503 3.7222
3.6548 3.4976 12000 0.3522 3.7038
3.648 3.7891 13000 0.3541 3.6842
3.5508 4.0805 14000 0.3552 3.6775
3.5812 4.3719 15000 0.3561 3.6669
3.569 4.6634 16000 0.3573 3.6520
3.5877 4.9549 17000 0.3587 3.6403
3.4948 5.2463 18000 0.3590 3.6430
3.5325 5.5378 19000 0.3600 3.6321
3.5233 5.8293 20000 0.3612 3.6200
3.4489 6.1207 21000 0.3614 3.6258
3.4843 6.4122 22000 0.3619 3.6172
3.4817 6.7037 23000 0.3628 3.6051
3.5031 6.9952 24000 0.3637 3.5966
3.427 7.2865 25000 0.3635 3.6063
3.4648 7.5780 26000 0.3641 3.5961
3.4604 7.8695 27000 0.3649 3.5884
3.3862 8.1609 28000 0.3646 3.5988
3.4311 8.4524 29000 0.3655 3.5892
3.4337 8.7439 30000 0.3658 3.5829
3.3416 9.0353 31000 0.3660 3.5872
3.3808 9.3268 32000 0.3663 3.5857
3.4145 9.6183 33000 0.3666 3.5778
3.4145 9.9098 34000 0.3675 3.5677
3.338 10.2011 35000 0.3673 3.5806
3.3617 10.4926 36000 0.3676 3.5732
3.3788 10.7841 37000 0.3683 3.5642
3.2902 11.0755 38000 0.3681 3.5740
3.3374 11.3670 39000 0.3679 3.5737
3.3726 11.6585 40000 0.3687 3.5633
3.3734 11.9500 41000 0.3693 3.5566
3.3117 12.2414 42000 0.3686 3.5702
3.35 12.5329 43000 0.3692 3.5649
3.3493 12.8243 44000 0.3697 3.5541
3.2673 13.1157 45000 0.3692 3.5707
3.3048 13.4072 46000 0.3694 3.5630
3.3353 13.6987 47000 0.3700 3.5566
3.3384 13.9902 48000 0.3706 3.5497
3.2768 14.2816 49000 0.3701 3.5615
3.3012 14.5731 50000 0.3704 3.5572
3.3365 14.8646 51000 0.3709 3.5476
3.2517 15.1559 52000 0.3702 3.5644
3.2817 15.4474 53000 0.3707 3.5549
3.3105 15.7389 54000 0.3712 3.5488
3.2064 16.0303 55000 0.3707 3.5604
3.2604 16.3218 56000 0.3708 3.5570
3.2866 16.6133 57000 0.3712 3.5530
3.3056 16.9048 58000 0.3719 3.5424
3.2399 17.1962 59000 0.3709 3.5605
3.2597 17.4877 60000 0.3715 3.5511
3.2816 17.7792 61000 0.3718 3.5459
3.2005 18.0705 62000 0.3714 3.5583
3.2376 18.3620 63000 0.3713 3.5548
3.2578 18.6535 64000 0.3718 3.5464
3.2823 18.9450 65000 0.3722 3.5393
3.209 19.2364 66000 0.3719 3.5554
3.2468 19.5279 67000 0.3720 3.5495
3.2702 19.8194 68000 0.3724 3.5422
3.1871 20.1108 69000 0.3717 3.5616
3.2294 20.4023 70000 0.3719 3.5546
3.2532 20.6938 71000 0.3725 3.5447
3.2632 20.9853 72000 0.3731 3.5370
3.2012 21.2766 73000 0.3722 3.5546
3.2272 21.5681 74000 0.3728 3.5471
3.2546 21.8596 75000 0.3729 3.5400
3.1653 22.1510 76000 0.3725 3.5569
3.2096 22.4425 77000 0.3727 3.5522
3.2353 22.7340 78000 0.3728 3.5429
3.128 23.0254 79000 0.3727 3.5549
3.187 23.3169 80000 0.3724 3.5552
3.2108 23.6083 81000 0.3729 3.5457
3.222 23.8998 82000 0.3733 3.5391
3.1629 24.1912 83000 0.3727 3.5599
3.1893 24.4827 84000 0.3730 3.5529
3.211 24.7742 85000 0.3735 3.5381
3.1287 25.0656 86000 0.3727 3.5582
3.1707 25.3571 87000 0.3731 3.5532
3.1943 25.6486 88000 0.3735 3.5434
3.2172 25.9401 89000 0.3739 3.5374
3.1435 26.2314 90000 0.3729 3.5581
3.1584 26.5229 91000 3.5578 0.3729
3.1813 26.8144 92000 3.5505 0.3732
3.1252 27.1061 93000 3.5587 0.3729
3.1641 27.3976 94000 3.5547 0.3730
3.1761 27.6891 95000 3.5441 0.3735
3.2012 27.9806 96000 3.5393 0.3742
3.1311 28.2720 97000 3.5569 0.3733
3.1668 28.5635 98000 3.5514 0.3736
3.1675 28.8550 99000 3.5454 0.3738
3.1173 29.1463 100000 3.5612 0.3731
3.133 29.4378 101000 3.5535 0.3734
3.1742 29.7293 102000 3.5449 0.3741
3.0852 30.0207 103000 3.5563 0.3735
3.1259 30.3122 104000 3.5530 0.3736
3.1595 30.6037 105000 3.5495 0.3741
3.1501 30.8952 106000 3.5422 0.3745
3.1198 31.1866 107000 3.5602 0.3736
3.1232 31.4781 108000 3.5533 0.3740
3.142 31.7695 109000 3.5438 0.3742
3.0683 32.0609 110000 3.5560 0.3738

Framework versions

  • Transformers 4.55.2
  • Pytorch 2.8.0+cu128
  • Datasets 4.0.0
  • Tokenizers 0.21.4
Downloads last month
21
Safetensors
Model size
0.1B params
Tensor type
F32
ยท
Inference Providers NEW
This model isn't deployed by any Inference Provider. ๐Ÿ™‹ Ask for provider support

Evaluation results