exceptions
Collection
Data and models for "Manipulating language models’ training data to study syntactic constraint learning: the case of English passivization"
•
49 items
•
Updated
This model is a fine-tuned version of on an unknown dataset. It achieves the following results on the evaluation set:
More information needed
More information needed
More information needed
The following hyperparameters were used during training:
| Training Loss | Epoch | Step | Validation Loss | Accuracy |
|---|---|---|---|---|
| 5.1266 | 0.1078 | 1000 | 5.0416 | 0.2255 |
| 4.6194 | 0.2156 | 2000 | 4.5361 | 0.2671 |
| 4.3296 | 0.3235 | 3000 | 4.2696 | 0.2954 |
| 4.1751 | 0.4313 | 4000 | 4.0999 | 0.3114 |
| 4.0618 | 0.5391 | 5000 | 4.0008 | 0.3203 |
| 4.0077 | 0.6469 | 6000 | 3.9325 | 0.3263 |
| 3.9306 | 0.7547 | 7000 | 3.8742 | 0.3323 |
| 3.8636 | 0.8625 | 8000 | 3.8250 | 0.3369 |
| 3.8653 | 0.9704 | 9000 | 3.7883 | 0.3401 |
| 3.7721 | 1.0782 | 10000 | 3.7573 | 0.3433 |
| 3.7783 | 1.1860 | 11000 | 3.7309 | 0.3463 |
| 3.7384 | 1.2938 | 12000 | 3.7029 | 0.3486 |
| 3.7152 | 1.4016 | 13000 | 3.6820 | 0.3510 |
| 3.7106 | 1.5094 | 14000 | 3.6608 | 0.3530 |
| 3.673 | 1.6173 | 15000 | 3.6430 | 0.3548 |
| 3.6719 | 1.7251 | 16000 | 3.6251 | 0.3568 |
| 3.6449 | 1.8329 | 17000 | 3.6107 | 0.3580 |
| 3.6395 | 1.9407 | 18000 | 3.5955 | 0.3591 |
| 3.5784 | 2.0485 | 19000 | 3.5867 | 0.3613 |
| 3.5816 | 2.1563 | 20000 | 3.5776 | 0.3616 |
| 3.5716 | 2.2642 | 21000 | 3.5651 | 0.3632 |
| 3.5795 | 2.3720 | 22000 | 3.5569 | 0.3641 |
| 3.5451 | 2.4798 | 23000 | 3.5442 | 0.3651 |
| 3.5389 | 2.5876 | 24000 | 3.5345 | 0.3665 |
| 3.5351 | 2.6954 | 25000 | 3.5261 | 0.3669 |
| 3.5397 | 2.8032 | 26000 | 3.5164 | 0.3679 |
| 3.5532 | 2.9111 | 27000 | 3.5089 | 0.3690 |
| 3.4533 | 3.0189 | 28000 | 3.5048 | 0.3695 |
| 3.4393 | 3.1267 | 29000 | 3.5027 | 0.3705 |
| 3.4587 | 3.2345 | 30000 | 3.4946 | 0.3711 |
| 3.4655 | 3.3423 | 31000 | 3.4889 | 0.3713 |
| 3.4673 | 3.4501 | 32000 | 3.4800 | 0.3726 |
| 3.469 | 3.5580 | 33000 | 3.4780 | 0.3731 |
| 3.4678 | 3.6658 | 34000 | 3.4688 | 0.3732 |
| 3.4686 | 3.7736 | 35000 | 3.4623 | 0.3744 |
| 3.4592 | 3.8814 | 36000 | 3.4562 | 0.3747 |
| 3.4572 | 3.9892 | 37000 | 3.4497 | 0.3755 |
| 3.3731 | 4.0970 | 38000 | 3.4552 | 0.3757 |
| 3.3721 | 4.2049 | 39000 | 3.4490 | 0.3767 |
| 3.3974 | 4.3127 | 40000 | 3.4448 | 0.3770 |
| 3.4023 | 4.4205 | 41000 | 3.4379 | 0.3774 |
| 3.3948 | 4.5283 | 42000 | 3.4337 | 0.3780 |
| 3.4056 | 4.6361 | 43000 | 3.4286 | 0.3781 |
| 3.397 | 4.7439 | 44000 | 3.4248 | 0.3787 |
| 3.4165 | 4.8518 | 45000 | 3.4190 | 0.3796 |
| 3.3811 | 4.9596 | 46000 | 3.4153 | 0.3800 |
| 3.3247 | 5.0674 | 47000 | 3.4145 | 0.3802 |
| 3.323 | 5.1752 | 48000 | 3.4155 | 0.3807 |
| 3.3547 | 5.2830 | 49000 | 3.4113 | 0.3808 |
| 3.3508 | 5.3908 | 50000 | 3.4057 | 0.3814 |
| 3.3525 | 5.4987 | 51000 | 3.4021 | 0.3817 |
| 3.3267 | 5.6065 | 52000 | 3.3966 | 0.3820 |
| 3.3419 | 5.7143 | 53000 | 3.3925 | 0.3826 |
| 3.3404 | 5.8221 | 54000 | 3.3886 | 0.3830 |
| 3.3433 | 5.9299 | 55000 | 3.3859 | 0.3834 |
| 3.245 | 6.0377 | 56000 | 3.3885 | 0.3834 |
| 3.2666 | 6.1456 | 57000 | 3.3866 | 0.3837 |
| 3.2856 | 6.2534 | 58000 | 3.3833 | 0.3841 |
| 3.2984 | 6.3612 | 59000 | 3.3796 | 0.3844 |
| 3.2985 | 6.4690 | 60000 | 3.3764 | 0.3851 |
| 3.2917 | 6.5768 | 61000 | 3.3715 | 0.3854 |
| 3.3085 | 6.6846 | 62000 | 3.3664 | 0.3858 |
| 3.287 | 6.7925 | 63000 | 3.3639 | 0.3863 |
| 3.2978 | 6.9003 | 64000 | 3.3586 | 0.3868 |
| 3.1929 | 7.0081 | 65000 | 3.3601 | 0.3868 |
| 3.2332 | 7.1159 | 66000 | 3.3624 | 0.3869 |
| 3.2376 | 7.2237 | 67000 | 3.3603 | 0.3872 |
| 3.2385 | 7.3315 | 68000 | 3.3575 | 0.3874 |
| 3.2295 | 7.4394 | 69000 | 3.3512 | 0.3878 |
| 3.2336 | 7.5472 | 70000 | 3.3498 | 0.3880 |
| 3.2609 | 7.6550 | 71000 | 3.3443 | 0.3888 |
| 3.2596 | 7.7628 | 72000 | 3.3419 | 0.3890 |
| 3.2395 | 7.8706 | 73000 | 3.3371 | 0.3893 |
| 3.2613 | 7.9784 | 74000 | 3.3327 | 0.3899 |
| 3.1658 | 8.0863 | 75000 | 3.3381 | 0.3898 |
| 3.1677 | 8.1941 | 76000 | 3.3371 | 0.3899 |
| 3.1848 | 8.3019 | 77000 | 3.3346 | 0.3901 |
| 3.1791 | 8.4097 | 78000 | 3.3315 | 0.3905 |
| 3.1914 | 8.5175 | 79000 | 3.3273 | 0.3907 |
| 3.2046 | 8.6253 | 80000 | 3.3241 | 0.3914 |
| 3.1984 | 8.7332 | 81000 | 3.3215 | 0.3917 |
| 3.194 | 8.8410 | 82000 | 3.3170 | 0.3920 |
| 3.1764 | 8.9488 | 83000 | 3.3141 | 0.3923 |
| 3.1378 | 9.0566 | 84000 | 3.3158 | 0.3925 |
| 3.1297 | 9.1644 | 85000 | 3.3160 | 0.3924 |
| 3.1542 | 9.2722 | 86000 | 3.3140 | 0.3929 |
| 3.1329 | 9.3801 | 87000 | 3.3117 | 0.3930 |
| 3.1403 | 9.4879 | 88000 | 3.3090 | 0.3934 |
| 3.1185 | 9.5957 | 89000 | 3.3069 | 0.3935 |
| 3.1479 | 9.7035 | 90000 | 3.3046 | 0.3939 |
| 3.1363 | 9.8113 | 91000 | 3.3026 | 0.3941 |
| 3.1311 | 9.9191 | 92000 | 3.3012 | 0.3942 |