exceptions
Collection
Data and models for "Manipulating language models’ training data to study syntactic constraint learning: the case of English passivization"
•
49 items
•
Updated
This model is a fine-tuned version of on an unknown dataset. It achieves the following results on the evaluation set:
More information needed
More information needed
More information needed
The following hyperparameters were used during training:
| Training Loss | Epoch | Step | Validation Loss | Accuracy |
|---|---|---|---|---|
| 5.1158 | 0.1078 | 1000 | 5.0268 | 0.2271 |
| 4.5969 | 0.2156 | 2000 | 4.5213 | 0.2685 |
| 4.3226 | 0.3235 | 3000 | 4.2434 | 0.2975 |
| 4.1633 | 0.4313 | 4000 | 4.0995 | 0.3112 |
| 4.067 | 0.5391 | 5000 | 3.9977 | 0.3205 |
| 4.0094 | 0.6469 | 6000 | 3.9245 | 0.3273 |
| 3.9333 | 0.7547 | 7000 | 3.8702 | 0.3322 |
| 3.8908 | 0.8625 | 8000 | 3.8236 | 0.3367 |
| 3.8468 | 0.9704 | 9000 | 3.7843 | 0.3404 |
| 3.7834 | 1.0782 | 10000 | 3.7605 | 0.3438 |
| 3.7453 | 1.1860 | 11000 | 3.7308 | 0.3465 |
| 3.7415 | 1.2938 | 12000 | 3.7053 | 0.3489 |
| 3.7168 | 1.4016 | 13000 | 3.6832 | 0.3508 |
| 3.7043 | 1.5094 | 14000 | 3.6631 | 0.3529 |
| 3.6862 | 1.6173 | 15000 | 3.6426 | 0.3549 |
| 3.6844 | 1.7251 | 16000 | 3.6235 | 0.3565 |
| 3.6681 | 1.8329 | 17000 | 3.6109 | 0.3579 |
| 3.6492 | 1.9407 | 18000 | 3.5945 | 0.3597 |
| 3.5662 | 2.0485 | 19000 | 3.5833 | 0.3613 |
| 3.5644 | 2.1563 | 20000 | 3.5763 | 0.3624 |
| 3.5641 | 2.2642 | 21000 | 3.5669 | 0.3629 |
| 3.5501 | 2.3720 | 22000 | 3.5552 | 0.3642 |
| 3.5599 | 2.4798 | 23000 | 3.5451 | 0.3648 |
| 3.5464 | 2.5876 | 24000 | 3.5349 | 0.3662 |
| 3.5333 | 2.6954 | 25000 | 3.5272 | 0.3671 |
| 3.5455 | 2.8032 | 26000 | 3.5187 | 0.3681 |
| 3.528 | 2.9111 | 27000 | 3.5090 | 0.3690 |
| 3.4525 | 3.0189 | 28000 | 3.5079 | 0.3698 |
| 3.4475 | 3.1267 | 29000 | 3.5003 | 0.3702 |
| 3.4748 | 3.2345 | 30000 | 3.4942 | 0.3713 |
| 3.483 | 3.3423 | 31000 | 3.4869 | 0.3721 |
| 3.4706 | 3.4501 | 32000 | 3.4801 | 0.3725 |
| 3.4611 | 3.5580 | 33000 | 3.4747 | 0.3730 |
| 3.4598 | 3.6658 | 34000 | 3.4697 | 0.3739 |
| 3.4771 | 3.7736 | 35000 | 3.4636 | 0.3743 |
| 3.4431 | 3.8814 | 36000 | 3.4571 | 0.3751 |
| 3.4243 | 3.9892 | 37000 | 3.4497 | 0.3754 |
| 3.3692 | 4.0970 | 38000 | 3.4523 | 0.3760 |
| 3.3918 | 4.2049 | 39000 | 3.4502 | 0.3765 |
| 3.4091 | 4.3127 | 40000 | 3.4436 | 0.3767 |
| 3.422 | 4.4205 | 41000 | 3.4394 | 0.3775 |
| 3.393 | 4.5283 | 42000 | 3.4345 | 0.3781 |
| 3.4159 | 4.6361 | 43000 | 3.4303 | 0.3784 |
| 3.3994 | 4.7439 | 44000 | 3.4247 | 0.3792 |
| 3.3961 | 4.8518 | 45000 | 3.4176 | 0.3798 |
| 3.3946 | 4.9596 | 46000 | 3.4152 | 0.3801 |
| 3.322 | 5.0674 | 47000 | 3.4158 | 0.3804 |
| 3.3155 | 5.1752 | 48000 | 3.4169 | 0.3806 |
| 3.3362 | 5.2830 | 49000 | 3.4121 | 0.3810 |
| 3.3482 | 5.3908 | 50000 | 3.4049 | 0.3815 |
| 3.324 | 5.4987 | 51000 | 3.4039 | 0.3815 |
| 3.3359 | 5.6065 | 52000 | 3.3993 | 0.3820 |
| 3.3481 | 5.7143 | 53000 | 3.3939 | 0.3827 |
| 3.3315 | 5.8221 | 54000 | 3.3893 | 0.3833 |
| 3.3364 | 5.9299 | 55000 | 3.3845 | 0.3838 |
| 3.247 | 6.0377 | 56000 | 3.3879 | 0.3835 |
| 3.2761 | 6.1456 | 57000 | 3.3888 | 0.3837 |
| 3.2835 | 6.2534 | 58000 | 3.3838 | 0.3842 |
| 3.2999 | 6.3612 | 59000 | 3.3810 | 0.3845 |
| 3.2914 | 6.4690 | 60000 | 3.3773 | 0.3848 |
| 3.2842 | 6.5768 | 61000 | 3.3741 | 0.3854 |
| 3.2877 | 6.6846 | 62000 | 3.3696 | 0.3857 |
| 3.2948 | 6.7925 | 63000 | 3.3657 | 0.3862 |
| 3.3097 | 6.9003 | 64000 | 3.3599 | 0.3866 |
| 3.2187 | 7.0081 | 65000 | 3.3643 | 0.3866 |
| 3.23 | 7.1159 | 66000 | 3.3631 | 0.3874 |
| 3.2382 | 7.2237 | 67000 | 3.3612 | 0.3873 |
| 3.2217 | 7.3315 | 68000 | 3.3564 | 0.3878 |
| 3.2568 | 7.4394 | 69000 | 3.3538 | 0.3879 |
| 3.2423 | 7.5472 | 70000 | 3.3503 | 0.3883 |
| 3.2428 | 7.6550 | 71000 | 3.3445 | 0.3888 |
| 3.2389 | 7.7628 | 72000 | 3.3423 | 0.3893 |
| 3.2367 | 7.8706 | 73000 | 3.3380 | 0.3894 |
| 3.252 | 7.9784 | 74000 | 3.3350 | 0.3899 |
| 3.1652 | 8.0863 | 75000 | 3.3407 | 0.3896 |
| 3.1925 | 8.1941 | 76000 | 3.3392 | 0.3898 |
| 3.1827 | 8.3019 | 77000 | 3.3346 | 0.3902 |
| 3.2004 | 8.4097 | 78000 | 3.3322 | 0.3907 |
| 3.1857 | 8.5175 | 79000 | 3.3292 | 0.3909 |
| 3.1825 | 8.6253 | 80000 | 3.3254 | 0.3915 |
| 3.1963 | 8.7332 | 81000 | 3.3209 | 0.3919 |
| 3.1999 | 8.8410 | 82000 | 3.3183 | 0.3922 |
| 3.1784 | 8.9488 | 83000 | 3.3152 | 0.3923 |
| 3.1145 | 9.0566 | 84000 | 3.3193 | 0.3922 |
| 3.1522 | 9.1644 | 85000 | 3.3165 | 0.3926 |
| 3.1391 | 9.2722 | 86000 | 3.3155 | 0.3929 |
| 3.1263 | 9.3801 | 87000 | 3.3133 | 0.3931 |
| 3.1443 | 9.4879 | 88000 | 3.3096 | 0.3935 |
| 3.136 | 9.5957 | 89000 | 3.3084 | 0.3937 |
| 3.1416 | 9.7035 | 90000 | 3.3057 | 0.3940 |
| 3.1381 | 9.8113 | 91000 | 3.3039 | 0.3941 |
| 3.1484 | 9.9191 | 92000 | 3.3024 | 0.3943 |