๐ About This Model
This model is google/functiongemma-270m-it converted to GGUF format for use with llama.cpp, Ollama, LM Studio, and other compatible inference engines.
| Property | Value |
|---|---|
| Base Model | google/functiongemma-270m-it |
| Format | GGUF |
| Quantization | Q4_K_M |
| License | apache-2.0 |
| Created With | QuantLLM |
๐ Quick Start
Option 1: Python (llama-cpp-python)
from llama_cpp import Llama
# Load the model
llm = Llama.from_pretrained(
repo_id="QuantLLM/functiongemma-270m-it-4bit-gguf",
filename="functiongemma-270m-it-4bit-gguf.Q4_K_M.gguf",
)
# Generate text
output = llm(
"Write a short story about a robot learning to paint:",
max_tokens=256,
echo=True
)
print(output["choices"][0]["text"])
Option 2: Ollama
# Download the model
huggingface-cli download QuantLLM/functiongemma-270m-it-4bit-gguf functiongemma-270m-it-4bit-gguf.Q4_K_M.gguf --local-dir .
# Create Modelfile
echo 'FROM ./functiongemma-270m-it-4bit-gguf.Q4_K_M.gguf' > Modelfile
# Import to Ollama
ollama create functiongemma-270m-it-4bit-gguf -f Modelfile
# Chat with the model
ollama run functiongemma-270m-it-4bit-gguf
Option 3: LM Studio
- Download the
.gguffile from the Files tab above - Open LM Studio โ My Models โ Add Model
- Select the downloaded file
- Start chatting!
Option 4: llama.cpp CLI
# Download
huggingface-cli download QuantLLM/functiongemma-270m-it-4bit-gguf functiongemma-270m-it-4bit-gguf.Q4_K_M.gguf --local-dir .
# Run inference
./llama-cli -m functiongemma-270m-it-4bit-gguf.Q4_K_M.gguf -p "Hello! " -n 128
๐ Model Details
| Property | Value |
|---|---|
| Original Model | google/functiongemma-270m-it |
| Format | GGUF |
| Quantization | Q4_K_M |
| License | apache-2.0 |
| Export Date | 2025-12-21 |
| Exported By | QuantLLM v2.0 |
๐ฆ Quantization Details
This model uses Q4_K_M quantization:
| Property | Value |
|---|---|
| Type | Q4_K_M |
| Bits | 4-bit |
| Quality | ๐ข โญ Recommended - Best quality/size balance |
All Available GGUF Quantizations
| Type | Bits | Quality | Best For |
|---|---|---|---|
| Q2_K | 2-bit | ๐ด Lowest | Extreme size constraints |
| Q3_K_M | 3-bit | ๐ Low | Very limited memory |
| Q4_K_M | 4-bit | ๐ข Good | Most users โญ |
| Q5_K_M | 5-bit | ๐ข High | Quality-focused |
| Q6_K | 6-bit | ๐ต Very High | Near-original |
| Q8_0 | 8-bit | ๐ต Excellent | Maximum quality |
๐ Created with QuantLLM
Convert any model to GGUF, ONNX, or MLX in one line!
from quantllm import turbo
# Load any HuggingFace model
model = turbo("google/functiongemma-270m-it")
# Export to any format
model.export("gguf", quantization="Q4_K_M")
# Push to HuggingFace
model.push("your-repo", format="gguf")
๐ Documentation ยท ๐ Report Issue ยท ๐ก Request Feature
- Downloads last month
- 20
Hardware compatibility
Log In
to view the estimation
4-bit
Inference Providers
NEW
This model isn't deployed by any Inference Provider.
๐
Ask for provider support
Model tree for QuantLLM/functiongemma-270m-it-4bit-gguf
Base model
google/functiongemma-270m-it