--- library_name: transformers license: apache-2.0 base_model: bert-base-uncased tags: - generated_from_trainer metrics: - accuracy - precision - recall - f1 model-index: - name: bert-binary-clf results: [] --- # bert-binary-clf This model is a fine-tuned version of [bert-base-uncased](https://huggingface.co/bert-base-uncased) on an unknown dataset. It achieves the following results on the evaluation set: - Loss: 0.1279 - Accuracy: 0.9748 - Precision: 0.9825 - Recall: 0.9655 - F1: 0.9739 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 2e-05 - train_batch_size: 16 - eval_batch_size: 16 - seed: 42 - optimizer: Use OptimizerNames.ADAMW_TORCH_FUSED with betas=(0.9,0.999) and epsilon=1e-08 and optimizer_args=No additional optimizer arguments - lr_scheduler_type: linear - num_epochs: 4 ### Training results | Training Loss | Epoch | Step | Validation Loss | Accuracy | Precision | Recall | F1 | |:-------------:|:-----:|:----:|:---------------:|:--------:|:---------:|:------:|:------:| | 0.4681 | 1.0 | 30 | 0.3535 | 0.8824 | 0.8143 | 0.9828 | 0.8906 | | 0.2283 | 2.0 | 60 | 0.1883 | 0.9412 | 0.9322 | 0.9483 | 0.9402 | | 0.1144 | 3.0 | 90 | 0.1279 | 0.9748 | 0.9825 | 0.9655 | 0.9739 | | 0.0695 | 4.0 | 120 | 0.1230 | 0.9580 | 0.9818 | 0.9310 | 0.9558 | ### Framework versions - Transformers 4.57.1 - Pytorch 2.8.0+cu126 - Datasets 4.0.0 - Tokenizers 0.22.1