Spaces:
Paused
Paused
Commit
·
5504846
1
Parent(s):
d5bf444
save initial vitpose
Browse files- app.py +4 -2
- tasks.py +147 -86
- vitpose.py +1 -1
app.py
CHANGED
|
@@ -1,4 +1,4 @@
|
|
| 1 |
-
from fastapi import FastAPI, UploadFile, File, Response,Header, BackgroundTasks,Body
|
| 2 |
from fastapi.staticfiles import StaticFiles
|
| 3 |
from vitpose import VitPose
|
| 4 |
from dotenv import load_dotenv
|
|
@@ -65,7 +65,8 @@ async def upload(background_tasks: BackgroundTasks,
|
|
| 65 |
player_data = json.loads(player_data)
|
| 66 |
|
| 67 |
if token != AI_API_TOKEN:
|
| 68 |
-
|
|
|
|
| 69 |
|
| 70 |
logger.info("reading contents")
|
| 71 |
contents = await file.read()
|
|
@@ -86,4 +87,5 @@ async def upload(background_tasks: BackgroundTasks,
|
|
| 86 |
exercise_id)
|
| 87 |
|
| 88 |
# Return the file as a response
|
|
|
|
| 89 |
return JSONResponse(content={"message": "Video uploaded successfully", "status": 200})
|
|
|
|
| 1 |
+
from fastapi import FastAPI, UploadFile, File, Response,Header, BackgroundTasks,Body,HTTPException
|
| 2 |
from fastapi.staticfiles import StaticFiles
|
| 3 |
from vitpose import VitPose
|
| 4 |
from dotenv import load_dotenv
|
|
|
|
| 65 |
player_data = json.loads(player_data)
|
| 66 |
|
| 67 |
if token != AI_API_TOKEN:
|
| 68 |
+
|
| 69 |
+
raise HTTPException(status_code=401, detail="Unauthorized")
|
| 70 |
|
| 71 |
logger.info("reading contents")
|
| 72 |
contents = await file.read()
|
|
|
|
| 87 |
exercise_id)
|
| 88 |
|
| 89 |
# Return the file as a response
|
| 90 |
+
print(f"returning response")
|
| 91 |
return JSONResponse(content={"message": "Video uploaded successfully", "status": 200})
|
tasks.py
CHANGED
|
@@ -64,6 +64,8 @@ def process_salto_alto(file_name: str, vitpose: VitPose, player_data: dict, repe
|
|
| 64 |
exercise_id: ID of the exercise
|
| 65 |
"""
|
| 66 |
# Use the provided VitPose instance
|
|
|
|
|
|
|
| 67 |
model = vitpose.pipeline
|
| 68 |
|
| 69 |
# Get player parameters from player_data or use defaults
|
|
@@ -152,16 +154,36 @@ def analyze_jump_video(model, input_video, output_video, reference_height=1.68,
|
|
| 152 |
initial_right_shoulder_x = None
|
| 153 |
|
| 154 |
# Process first frame to calibrate
|
| 155 |
-
|
| 156 |
-
|
| 157 |
-
|
| 158 |
-
|
| 159 |
-
|
| 160 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 161 |
print(f"Escala calculada: {PX_PER_METER:.2f} px/m")
|
| 162 |
-
if kpts_first[
|
| 163 |
-
initial_left_shoulder_x = int(kpts_first[
|
| 164 |
-
initial_right_shoulder_x = int(kpts_first[
|
| 165 |
|
| 166 |
if PX_PER_METER is None or initial_left_shoulder_x is None or initial_right_shoulder_x is None:
|
| 167 |
print("No se pudo calibrar la escala o detectar los hombros en el primer frame.")
|
|
@@ -200,87 +222,126 @@ def analyze_jump_video(model, input_video, output_video, reference_height=1.68,
|
|
| 200 |
break
|
| 201 |
|
| 202 |
annotated_frame = frame.copy()
|
| 203 |
-
results = model(annotated_frame)
|
| 204 |
|
| 205 |
-
|
| 206 |
-
|
| 207 |
-
|
| 208 |
-
|
| 209 |
-
ankles = [kpts[15], kpts[16]]
|
| 210 |
-
left_shoulder = kpts[5]
|
| 211 |
-
right_shoulder = kpts[6]
|
| 212 |
|
| 213 |
-
|
| 214 |
-
|
| 215 |
-
|
| 216 |
-
|
| 217 |
-
|
| 218 |
-
current_right_shoulder_x = int(right_shoulder[0])
|
| 219 |
-
|
| 220 |
-
# Smooth ankle and head positions
|
| 221 |
-
ankle_y_history.append(current_ankle_y)
|
| 222 |
-
if len(ankle_y_history) > SMOOTHING_WINDOW:
|
| 223 |
-
ankle_y_history.pop(0)
|
| 224 |
-
smoothed_ankle_y = np.mean(ankle_y_history)
|
| 225 |
-
|
| 226 |
-
head_y_history.append(current_head_y)
|
| 227 |
-
if len(head_y_history) > SMOOTHING_WINDOW:
|
| 228 |
-
head_y_history.pop(0)
|
| 229 |
-
smoothed_head_y = np.mean(head_y_history)
|
| 230 |
|
| 231 |
-
|
| 232 |
-
|
| 233 |
-
if len(head_y_buffer) > VELOCITY_WINDOW:
|
| 234 |
-
head_y_buffer.pop(0)
|
| 235 |
-
if PX_PER_METER is not None and fps > 0:
|
| 236 |
-
delta_y_pixels = head_y_buffer[0] - head_y_buffer[-1]
|
| 237 |
-
delta_y_meters = delta_y_pixels / PX_PER_METER
|
| 238 |
-
delta_t = VELOCITY_WINDOW / fps
|
| 239 |
-
velocity_vertical = delta_y_meters / delta_t
|
| 240 |
|
| 241 |
-
#
|
| 242 |
-
if
|
| 243 |
-
|
| 244 |
-
|
| 245 |
-
|
| 246 |
-
|
| 247 |
-
|
| 248 |
-
|
| 249 |
-
|
| 250 |
-
|
| 251 |
-
|
| 252 |
-
|
| 253 |
-
|
| 254 |
-
|
| 255 |
-
|
| 256 |
-
|
| 257 |
-
|
| 258 |
-
|
| 259 |
-
|
| 260 |
-
|
| 261 |
-
|
| 262 |
-
|
| 263 |
-
|
| 264 |
-
|
| 265 |
-
|
| 266 |
-
|
| 267 |
-
|
| 268 |
-
|
| 269 |
-
|
| 270 |
-
|
| 271 |
-
|
| 272 |
-
|
| 273 |
-
|
| 274 |
-
|
| 275 |
-
|
| 276 |
-
|
| 277 |
-
if
|
| 278 |
-
|
| 279 |
-
|
| 280 |
-
|
| 281 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 282 |
|
| 283 |
-
# Calculate
|
|
|
|
| 284 |
salto_alto = calculate_absolute_jump_height(reference_height, max_jump_height)
|
| 285 |
|
| 286 |
# Draw floating metric boxes
|
|
@@ -370,7 +431,7 @@ def calculate_absolute_jump_height(reference_height, relative_jump):
|
|
| 370 |
Returns:
|
| 371 |
Absolute jump height in meters
|
| 372 |
"""
|
| 373 |
-
absolute_jump = reference_height + relative_jump
|
| 374 |
# Apply validation rule
|
| 375 |
if absolute_jump > 1.72:
|
| 376 |
return absolute_jump
|
|
|
|
| 64 |
exercise_id: ID of the exercise
|
| 65 |
"""
|
| 66 |
# Use the provided VitPose instance
|
| 67 |
+
|
| 68 |
+
print(f"start processing")
|
| 69 |
model = vitpose.pipeline
|
| 70 |
|
| 71 |
# Get player parameters from player_data or use defaults
|
|
|
|
| 154 |
initial_right_shoulder_x = None
|
| 155 |
|
| 156 |
# Process first frame to calibrate
|
| 157 |
+
output = model(frame) # Detect pose in first frame
|
| 158 |
+
keypoints = output.keypoints_xy.float().cpu().numpy()
|
| 159 |
+
print(f"keypoints {keypoints}")
|
| 160 |
+
labels = model.pose_estimator_config.label2id
|
| 161 |
+
print(labels)
|
| 162 |
+
nose_keypoint = labels["Nose"]
|
| 163 |
+
L_ankle_keypoint = labels["L_Ankle"]
|
| 164 |
+
R_ankle_keypoint = labels["R_Ankle"]
|
| 165 |
+
L_shoulder_keypoint = labels["L_Shoulder"]
|
| 166 |
+
R_shoulder_keypoint = labels["R_Shoulder"]
|
| 167 |
+
print(f"nose_keypoint {nose_keypoint}")
|
| 168 |
+
print(f"L_ankle_keypoint {L_ankle_keypoint}")
|
| 169 |
+
print(f"R_ankle_keypoint {R_ankle_keypoint}")
|
| 170 |
+
print(f"L_shoulder_keypoint {L_shoulder_keypoint}")
|
| 171 |
+
print(f"R_shoulder_keypoint {R_shoulder_keypoint}")
|
| 172 |
+
|
| 173 |
+
if (
|
| 174 |
+
keypoints is not None
|
| 175 |
+
and len(keypoints) > 0
|
| 176 |
+
and len(keypoints[0]) > 0):
|
| 177 |
+
|
| 178 |
+
kpts_first = keypoints[0]
|
| 179 |
+
if len(kpts_first[nose_keypoint]) > 0 and len(kpts_first[L_ankle_keypoint]) > 0: # Nose and ankles
|
| 180 |
+
initial_person_height_px = min(kpts_first[L_ankle_keypoint][1], kpts_first[R_ankle_keypoint][1]) - kpts_first[nose_keypoint][1]
|
| 181 |
+
print(f"initial_person_height_px {initial_person_height_px}")
|
| 182 |
+
PX_PER_METER = float(initial_person_height_px) / float(reference_height)
|
| 183 |
print(f"Escala calculada: {PX_PER_METER:.2f} px/m")
|
| 184 |
+
if len(kpts_first[L_shoulder_keypoint]) > 0 and len(kpts_first[R_shoulder_keypoint]) > 0: # Left (5) and right (6) shoulders
|
| 185 |
+
initial_left_shoulder_x = int(kpts_first[L_shoulder_keypoint][0])
|
| 186 |
+
initial_right_shoulder_x = int(kpts_first[R_shoulder_keypoint][0])
|
| 187 |
|
| 188 |
if PX_PER_METER is None or initial_left_shoulder_x is None or initial_right_shoulder_x is None:
|
| 189 |
print("No se pudo calibrar la escala o detectar los hombros en el primer frame.")
|
|
|
|
| 222 |
break
|
| 223 |
|
| 224 |
annotated_frame = frame.copy()
|
|
|
|
| 225 |
|
| 226 |
+
# Add try-except block around the model inference to catch any model errors
|
| 227 |
+
try:
|
| 228 |
+
output = model(annotated_frame)
|
| 229 |
+
keypoints = output.keypoints_xy.float().cpu().numpy()
|
|
|
|
|
|
|
|
|
|
| 230 |
|
| 231 |
+
# Verify that keypoints array has valid data before processing
|
| 232 |
+
if (keypoints is not None and
|
| 233 |
+
len(keypoints) > 0 and
|
| 234 |
+
len(keypoints[0]) > 0 and
|
| 235 |
+
keypoints.size > 0): # Check if array is not empty
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 236 |
|
| 237 |
+
person_detected = True
|
| 238 |
+
kpts = keypoints[0]
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 239 |
|
| 240 |
+
# Make sure all required keypoints are detected
|
| 241 |
+
if (nose_keypoint < len(kpts) and L_ankle_keypoint < len(kpts) and
|
| 242 |
+
R_ankle_keypoint < len(kpts) and L_shoulder_keypoint < len(kpts) and
|
| 243 |
+
R_shoulder_keypoint < len(kpts)):
|
| 244 |
+
|
| 245 |
+
nose = kpts[nose_keypoint]
|
| 246 |
+
ankles = [kpts[L_ankle_keypoint], kpts[R_ankle_keypoint]]
|
| 247 |
+
left_shoulder = kpts[L_shoulder_keypoint]
|
| 248 |
+
right_shoulder = kpts[R_shoulder_keypoint]
|
| 249 |
+
|
| 250 |
+
# Check if keypoints have valid coordinates
|
| 251 |
+
if (nose[0] > 0 and nose[1] > 0 and
|
| 252 |
+
all(a[0] > 0 and a[1] > 0 for a in ankles) and
|
| 253 |
+
left_shoulder[0] > 0 and left_shoulder[1] > 0 and
|
| 254 |
+
right_shoulder[0] > 0 and right_shoulder[1] > 0):
|
| 255 |
+
|
| 256 |
+
# Continue with existing processing
|
| 257 |
+
current_ankle_y = min(a[1] for a in ankles)
|
| 258 |
+
last_detected_ankles_y = current_ankle_y
|
| 259 |
+
current_head_y = nose[1]
|
| 260 |
+
current_left_shoulder_x = int(left_shoulder[0])
|
| 261 |
+
current_right_shoulder_x = int(right_shoulder[0])
|
| 262 |
+
|
| 263 |
+
# Smooth ankle and head positions
|
| 264 |
+
ankle_y_history.append(current_ankle_y)
|
| 265 |
+
if len(ankle_y_history) > SMOOTHING_WINDOW:
|
| 266 |
+
ankle_y_history.pop(0)
|
| 267 |
+
smoothed_ankle_y = np.mean(ankle_y_history)
|
| 268 |
+
|
| 269 |
+
head_y_history.append(current_head_y)
|
| 270 |
+
if len(head_y_history) > SMOOTHING_WINDOW:
|
| 271 |
+
head_y_history.pop(0)
|
| 272 |
+
smoothed_head_y = np.mean(head_y_history)
|
| 273 |
+
|
| 274 |
+
# Calculate vertical velocity (using head position)
|
| 275 |
+
head_y_buffer.append(smoothed_head_y)
|
| 276 |
+
if len(head_y_buffer) > VELOCITY_WINDOW:
|
| 277 |
+
head_y_buffer.pop(0)
|
| 278 |
+
if PX_PER_METER is not None and fps > 0:
|
| 279 |
+
delta_y_pixels = head_y_buffer[0] - head_y_buffer[-1]
|
| 280 |
+
delta_y_meters = delta_y_pixels / PX_PER_METER
|
| 281 |
+
delta_t = VELOCITY_WINDOW / fps
|
| 282 |
+
velocity_vertical = delta_y_meters / delta_t
|
| 283 |
+
|
| 284 |
+
# Set ground level in first frame where ankles are detected
|
| 285 |
+
if ground_level is None:
|
| 286 |
+
ground_level = smoothed_ankle_y
|
| 287 |
+
takeoff_head_y = smoothed_head_y
|
| 288 |
+
|
| 289 |
+
relative_ankle_change = (ground_level - smoothed_ankle_y) / ground_level if ground_level > 0 else 0
|
| 290 |
+
|
| 291 |
+
# Detect jump start
|
| 292 |
+
if not jump_started and relative_ankle_change > JUMP_THRESHOLD_PERCENT:
|
| 293 |
+
jump_started = True
|
| 294 |
+
takeoff_head_y = smoothed_head_y
|
| 295 |
+
max_jump_height = 0
|
| 296 |
+
max_head_height_px = smoothed_head_y
|
| 297 |
+
|
| 298 |
+
# Detect jump end
|
| 299 |
+
if jump_started and relative_ankle_change <= JUMP_THRESHOLD_PERCENT:
|
| 300 |
+
# Add to repetition data
|
| 301 |
+
salto_alto = calculate_absolute_jump_height(reference_height, max_jump_height)
|
| 302 |
+
repetition_data.append({
|
| 303 |
+
"repetition": repetition_count + 1,
|
| 304 |
+
"relative_jump_m": round(max_jump_height, 3),
|
| 305 |
+
"absolute_jump_m": round(salto_alto, 3),
|
| 306 |
+
"peak_power_watts": round(current_power, 1)
|
| 307 |
+
})
|
| 308 |
+
repetition_count += 1
|
| 309 |
+
jump_started = False
|
| 310 |
+
|
| 311 |
+
# Update jump metrics while in air
|
| 312 |
+
if jump_started:
|
| 313 |
+
relative_jump = (takeoff_head_y - smoothed_head_y) / PX_PER_METER
|
| 314 |
+
if relative_jump > max_jump_height:
|
| 315 |
+
max_jump_height = relative_jump
|
| 316 |
+
if smoothed_head_y < max_head_height_px:
|
| 317 |
+
max_head_height_px = smoothed_head_y
|
| 318 |
+
if relative_jump:
|
| 319 |
+
current_power = calculate_peak_power_sayer(relative_jump, body_mass_kg)
|
| 320 |
+
if current_power > peak_power_sayer:
|
| 321 |
+
peak_power_sayer = current_power
|
| 322 |
+
else:
|
| 323 |
+
# Skip processing for this frame - invalid coordinates
|
| 324 |
+
print("Skipping frame - invalid keypoint coordinates")
|
| 325 |
+
print(f"keypoints {keypoints}")
|
| 326 |
+
else:
|
| 327 |
+
# Skip processing for this frame - missing required keypoints
|
| 328 |
+
print("Skipping frame - missing required keypoints")
|
| 329 |
+
print(f"keypoints {keypoints}")
|
| 330 |
+
else:
|
| 331 |
+
# Skip processing for this frame - no valid keypoints detected
|
| 332 |
+
print("Skipping frame - no valid keypoints detected")
|
| 333 |
+
print(f"keypoints {keypoints}")
|
| 334 |
+
last_detected_ankles_y = None
|
| 335 |
+
velocity_vertical = 0.0
|
| 336 |
+
except Exception as e:
|
| 337 |
+
# Handle any other exceptions that might occur during model inference
|
| 338 |
+
print(f"Error processing frame: {e}")
|
| 339 |
+
print(f"keypoints {keypoints}")
|
| 340 |
+
last_detected_ankles_y = None
|
| 341 |
+
velocity_vertical = 0.0
|
| 342 |
|
| 343 |
+
# Calculate metrics and draw overlay even if keypoints weren't detected
|
| 344 |
+
# This ensures video continues to show previous metrics
|
| 345 |
salto_alto = calculate_absolute_jump_height(reference_height, max_jump_height)
|
| 346 |
|
| 347 |
# Draw floating metric boxes
|
|
|
|
| 431 |
Returns:
|
| 432 |
Absolute jump height in meters
|
| 433 |
"""
|
| 434 |
+
absolute_jump = float(reference_height) + float(relative_jump)
|
| 435 |
# Apply validation rule
|
| 436 |
if absolute_jump > 1.72:
|
| 437 |
return absolute_jump
|
vitpose.py
CHANGED
|
@@ -17,7 +17,7 @@ class VitPose:
|
|
| 17 |
object_detection_checkpoint="PekingU/rtdetr_r50vd_coco_o365",
|
| 18 |
pose_estimation_checkpoint="usyd-community/vitpose-plus-small",
|
| 19 |
device="cuda" if torch.cuda.is_available() else "cpu",
|
| 20 |
-
dtype=torch.
|
| 21 |
compile=True, # or True to get more speedup
|
| 22 |
)
|
| 23 |
self.output_video_path = None
|
|
|
|
| 17 |
object_detection_checkpoint="PekingU/rtdetr_r50vd_coco_o365",
|
| 18 |
pose_estimation_checkpoint="usyd-community/vitpose-plus-small",
|
| 19 |
device="cuda" if torch.cuda.is_available() else "cpu",
|
| 20 |
+
dtype=torch.bfloat16,
|
| 21 |
compile=True, # or True to get more speedup
|
| 22 |
)
|
| 23 |
self.output_video_path = None
|