Upload 16 files
Browse files- app.py +11 -0
- t2i/infer.py +6 -3
- t2i/pipe.py +2 -6
- t2i/utils.py +598 -497
- t2i_config.py +47 -30
app.py
CHANGED
|
@@ -1,6 +1,17 @@
|
|
| 1 |
import spaces
|
| 2 |
import gradio as gr
|
| 3 |
from gradio_huggingfacehub_search import HuggingfaceHubSearch
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 4 |
from t2i.infer import (infer, infer_multi, infer_simple, save_image_history, save_gallery_history,
|
| 5 |
update_param_mode_gr, update_ar_gr,
|
| 6 |
MAX_SEED, MAX_IMAGE_SIZE, ASPECT_RATIOS, FILE_FORMATS, DEFAULT_TASKS, DEFAULT_DURATION,
|
|
|
|
| 1 |
import spaces
|
| 2 |
import gradio as gr
|
| 3 |
from gradio_huggingfacehub_search import HuggingfaceHubSearch
|
| 4 |
+
from t2i_config import KERNELS_PREFETCH_ON_STARTUP, KERNELS_PREFETCH_REPOS
|
| 5 |
+
|
| 6 |
+
if KERNELS_PREFETCH_ON_STARTUP:
|
| 7 |
+
try:
|
| 8 |
+
from kernels import has_kernel, get_kernel
|
| 9 |
+
for _repo_id in KERNELS_PREFETCH_REPOS:
|
| 10 |
+
if has_kernel(_repo_id):
|
| 11 |
+
get_kernel(_repo_id)
|
| 12 |
+
except Exception as _e:
|
| 13 |
+
print(f"INFO : Kernels prefetch skipped: {_e}")
|
| 14 |
+
|
| 15 |
from t2i.infer import (infer, infer_multi, infer_simple, save_image_history, save_gallery_history,
|
| 16 |
update_param_mode_gr, update_ar_gr,
|
| 17 |
MAX_SEED, MAX_IMAGE_SIZE, ASPECT_RATIOS, FILE_FORMATS, DEFAULT_TASKS, DEFAULT_DURATION,
|
t2i/infer.py
CHANGED
|
@@ -74,10 +74,13 @@ def infer_body(prompt: str, negative_prompt: str, seed: int, randomize_seed: boo
|
|
| 74 |
kwargs, ikwargs = {"generator": generator}, {}
|
| 75 |
metadata = {"prompt": prompt, "negative_prompt": negative_prompt, "Model": Path(model.split("/")[-1]).stem, "seed": seed}
|
| 76 |
if negative_prompt: kwargs["negative_prompt"] = negative_prompt
|
|
|
|
|
|
|
|
|
|
|
|
|
| 77 |
elif param_mode != "Default":
|
| 78 |
-
|
| 79 |
-
|
| 80 |
-
metadata |= {"num_inference_steps": num_inference_steps, "guidance_scale": guidance_scale, "resolution": f"{width} x {height}"} | params
|
| 81 |
|
| 82 |
if task == TASK_T2I:
|
| 83 |
if pipe_type == "Long Prompt Weighting" and model_type == "SDXL": kwargs["clip_skip"], metadata["clip_skip"] = clip_skip, clip_skip
|
|
|
|
| 74 |
kwargs, ikwargs = {"generator": generator}, {}
|
| 75 |
metadata = {"prompt": prompt, "negative_prompt": negative_prompt, "Model": Path(model.split("/")[-1]).stem, "seed": seed}
|
| 76 |
if negative_prompt: kwargs["negative_prompt"] = negative_prompt
|
| 77 |
+
if param_mode == "Auto":
|
| 78 |
+
params = get_auto_param(model_type)
|
| 79 |
+
kwargs |= params
|
| 80 |
+
metadata |= params
|
| 81 |
elif param_mode != "Default":
|
| 82 |
+
kwargs |= {"guidance_scale": guidance_scale, "num_inference_steps": num_inference_steps, "width": width, "height": height}
|
| 83 |
+
metadata |= {"num_inference_steps": num_inference_steps, "guidance_scale": guidance_scale, "resolution": f"{width} x {height}"}
|
|
|
|
| 84 |
|
| 85 |
if task == TASK_T2I:
|
| 86 |
if pipe_type == "Long Prompt Weighting" and model_type == "SDXL": kwargs["clip_skip"], metadata["clip_skip"] = clip_skip, clip_skip
|
t2i/pipe.py
CHANGED
|
@@ -5,7 +5,7 @@ import torch
|
|
| 5 |
from diffusers import DiffusionPipeline, AutoencoderKL
|
| 6 |
from diffusers.models.attention_processor import AttnProcessor2_0
|
| 7 |
from t2i_config import models, sdxl_vaes, sd15_vaes, PIPELINE_MAX_GIB
|
| 8 |
-
from t2i.utils import (logger, get_token, free_memory, calc_pipe_size, is_weight_url, get_file,
|
| 9 |
get_model_type, get_model_type_from_pipe, get_task_class, DEFAULT_TASKS, IS_ZEROGPU, DEVICE, DTYPE, IS_QUANT,
|
| 10 |
MAX_SEED, MAX_IMAGE_SIZE, DEFAULT_MODEL_TYPE, DEFAULT_STR, ASPECT_RATIOS, PIPELINE_TYPES, DEFAULT_VAE, PARAM_MODES)
|
| 11 |
|
|
@@ -43,11 +43,7 @@ class Pipeline:
|
|
| 43 |
self.lastmod = time.time()
|
| 44 |
if device != "cpu" and not IS_QUANT:
|
| 45 |
if self.pipe.device != device: self.pipe.to(device)
|
| 46 |
-
|
| 47 |
-
#if model_type in ["SD 1.5", "SDXL"]: self.pipe.unet.set_attn_processor(AttnProcessor2_0())
|
| 48 |
-
#elif model_type in ["FLUX"]: self.pipe.transformer.set_attn_processor(AttnProcessor2_0())
|
| 49 |
-
#self.pipe.vae.set_attn_processor(AttnProcessor2_0())
|
| 50 |
-
#logger.debug(f"SDPA enabled {type(self.pipe).__name__} ({model_type}) on {device}.") # by default in PyTorch 2.x
|
| 51 |
return self.pipe
|
| 52 |
|
| 53 |
def quantize(self):
|
|
|
|
| 5 |
from diffusers import DiffusionPipeline, AutoencoderKL
|
| 6 |
from diffusers.models.attention_processor import AttnProcessor2_0
|
| 7 |
from t2i_config import models, sdxl_vaes, sd15_vaes, PIPELINE_MAX_GIB
|
| 8 |
+
from t2i.utils import (logger, get_token, free_memory, calc_pipe_size, is_weight_url, get_file, apply_attention_backend,
|
| 9 |
get_model_type, get_model_type_from_pipe, get_task_class, DEFAULT_TASKS, IS_ZEROGPU, DEVICE, DTYPE, IS_QUANT,
|
| 10 |
MAX_SEED, MAX_IMAGE_SIZE, DEFAULT_MODEL_TYPE, DEFAULT_STR, ASPECT_RATIOS, PIPELINE_TYPES, DEFAULT_VAE, PARAM_MODES)
|
| 11 |
|
|
|
|
| 43 |
self.lastmod = time.time()
|
| 44 |
if device != "cpu" and not IS_QUANT:
|
| 45 |
if self.pipe.device != device: self.pipe.to(device)
|
| 46 |
+
apply_attention_backend(self.pipe)
|
|
|
|
|
|
|
|
|
|
|
|
|
| 47 |
return self.pipe
|
| 48 |
|
| 49 |
def quantize(self):
|
t2i/utils.py
CHANGED
|
@@ -1,497 +1,598 @@
|
|
| 1 |
-
import spaces
|
| 2 |
-
import os, gc, json, uuid, time, datetime, re, urllib, tempfile, math, inspect
|
| 3 |
-
from typing import Any, Tuple, Dict, List, Optional, Iterator
|
| 4 |
-
from dataclasses import dataclass, field
|
| 5 |
-
from pathlib import Path
|
| 6 |
-
from PIL import Image, PngImagePlugin
|
| 7 |
-
import torch
|
| 8 |
-
import numpy as np
|
| 9 |
-
import gradio as gr
|
| 10 |
-
from huggingface_hub import HfApi, hf_hub_download
|
| 11 |
-
from safetensors.torch import load_file
|
| 12 |
-
from diffusers import (AutoPipelineForText2Image, AutoPipelineForImage2Image, AutoPipelineForInpainting, DiffusionPipeline,
|
| 13 |
-
StableDiffusionPipeline, StableDiffusionImg2ImgPipeline, StableDiffusionControlNetInpaintPipeline,
|
| 14 |
-
StableDiffusionXLPipeline, StableDiffusionXLImg2ImgPipeline, FluxPipeline, FluxImg2ImgPipeline, FluxInpaintPipeline, AutoencoderKL)
|
| 15 |
-
from t2i.controlnet_union.pipeline.pipeline_controlnet_union_inpaint_sd_xl import StableDiffusionXLControlNetUnionInpaintPipeline
|
| 16 |
-
from t2i_config import STORAGE_MAX_GIB, IS_DEBUG
|
| 17 |
-
|
| 18 |
-
|
| 19 |
-
DEFAULT_STR = "Default"
|
| 20 |
-
IS_ZEROGPU = True if os.getenv("SPACES_ZERO_GPU", None) else False
|
| 21 |
-
DEVICE = "cuda" if torch.cuda.is_available() else "cpu"
|
| 22 |
-
DTYPE = torch.bfloat16 if torch.cuda.is_available() else torch.float32
|
| 23 |
-
IS_QUANT = False if IS_ZEROGPU else False # https://huggingface.co/posts/cbensimon/565026286160860#684a4147f1e1efa28f85ba5c
|
| 24 |
-
MAX_SEED = np.iinfo(np.int32).max
|
| 25 |
-
MAX_IMAGE_SIZE = 2048 #1216
|
| 26 |
-
PIPELINE_TYPES = ["Default", "Long Prompt Weighting"]
|
| 27 |
-
DEFAULT_VAE = DEFAULT_STR
|
| 28 |
-
PARAM_MODES = ["Auto", "Default", "Custom"]
|
| 29 |
-
DEFAULT_I2I_STRENGTH = 0.8
|
| 30 |
-
DEFAULT_UPSCALE_STRENGTH = 0.55
|
| 31 |
-
DEFAULT_UPSCALE_BY = 1.5
|
| 32 |
-
DEFAULT_CLIP_SKIP = 2
|
| 33 |
-
|
| 34 |
-
|
| 35 |
-
|
| 36 |
-
|
| 37 |
-
|
| 38 |
-
|
| 39 |
-
|
| 40 |
-
|
| 41 |
-
|
| 42 |
-
|
| 43 |
-
|
| 44 |
-
|
| 45 |
-
|
| 46 |
-
|
| 47 |
-
|
| 48 |
-
|
| 49 |
-
|
| 50 |
-
|
| 51 |
-
|
| 52 |
-
|
| 53 |
-
|
| 54 |
-
|
| 55 |
-
|
| 56 |
-
|
| 57 |
-
|
| 58 |
-
|
| 59 |
-
def
|
| 60 |
-
|
| 61 |
-
|
| 62 |
-
|
| 63 |
-
|
| 64 |
-
|
| 65 |
-
|
| 66 |
-
|
| 67 |
-
|
| 68 |
-
|
| 69 |
-
|
| 70 |
-
|
| 71 |
-
|
| 72 |
-
|
| 73 |
-
|
| 74 |
-
|
| 75 |
-
|
| 76 |
-
|
| 77 |
-
|
| 78 |
-
|
| 79 |
-
|
| 80 |
-
|
| 81 |
-
|
| 82 |
-
|
| 83 |
-
|
| 84 |
-
|
| 85 |
-
|
| 86 |
-
|
| 87 |
-
|
| 88 |
-
|
| 89 |
-
|
| 90 |
-
|
| 91 |
-
|
| 92 |
-
|
| 93 |
-
|
| 94 |
-
|
| 95 |
-
|
| 96 |
-
|
| 97 |
-
|
| 98 |
-
|
| 99 |
-
|
| 100 |
-
|
| 101 |
-
|
| 102 |
-
|
| 103 |
-
|
| 104 |
-
|
| 105 |
-
|
| 106 |
-
|
| 107 |
-
|
| 108 |
-
|
| 109 |
-
|
| 110 |
-
|
| 111 |
-
|
| 112 |
-
|
| 113 |
-
|
| 114 |
-
|
| 115 |
-
|
| 116 |
-
|
| 117 |
-
|
| 118 |
-
|
| 119 |
-
|
| 120 |
-
|
| 121 |
-
|
| 122 |
-
|
| 123 |
-
|
| 124 |
-
|
| 125 |
-
|
| 126 |
-
|
| 127 |
-
|
| 128 |
-
|
| 129 |
-
|
| 130 |
-
|
| 131 |
-
|
| 132 |
-
|
| 133 |
-
|
| 134 |
-
|
| 135 |
-
|
| 136 |
-
|
| 137 |
-
|
| 138 |
-
|
| 139 |
-
|
| 140 |
-
|
| 141 |
-
|
| 142 |
-
|
| 143 |
-
|
| 144 |
-
|
| 145 |
-
|
| 146 |
-
|
| 147 |
-
|
| 148 |
-
|
| 149 |
-
|
| 150 |
-
|
| 151 |
-
|
| 152 |
-
|
| 153 |
-
|
| 154 |
-
|
| 155 |
-
|
| 156 |
-
|
| 157 |
-
|
| 158 |
-
|
| 159 |
-
|
| 160 |
-
|
| 161 |
-
|
| 162 |
-
|
| 163 |
-
|
| 164 |
-
|
| 165 |
-
|
| 166 |
-
|
| 167 |
-
|
| 168 |
-
|
| 169 |
-
|
| 170 |
-
|
| 171 |
-
|
| 172 |
-
|
| 173 |
-
|
| 174 |
-
|
| 175 |
-
|
| 176 |
-
|
| 177 |
-
|
| 178 |
-
|
| 179 |
-
|
| 180 |
-
|
| 181 |
-
|
| 182 |
-
|
| 183 |
-
|
| 184 |
-
|
| 185 |
-
|
| 186 |
-
|
| 187 |
-
|
| 188 |
-
|
| 189 |
-
|
| 190 |
-
|
| 191 |
-
|
| 192 |
-
|
| 193 |
-
|
| 194 |
-
|
| 195 |
-
|
| 196 |
-
|
| 197 |
-
|
| 198 |
-
|
| 199 |
-
|
| 200 |
-
|
| 201 |
-
|
| 202 |
-
|
| 203 |
-
|
| 204 |
-
|
| 205 |
-
|
| 206 |
-
|
| 207 |
-
|
| 208 |
-
|
| 209 |
-
|
| 210 |
-
|
| 211 |
-
|
| 212 |
-
|
| 213 |
-
|
| 214 |
-
|
| 215 |
-
|
| 216 |
-
|
| 217 |
-
|
| 218 |
-
|
| 219 |
-
|
| 220 |
-
|
| 221 |
-
|
| 222 |
-
|
| 223 |
-
|
| 224 |
-
|
| 225 |
-
|
| 226 |
-
|
| 227 |
-
|
| 228 |
-
|
| 229 |
-
|
| 230 |
-
|
| 231 |
-
|
| 232 |
-
|
| 233 |
-
|
| 234 |
-
|
| 235 |
-
|
| 236 |
-
|
| 237 |
-
|
| 238 |
-
|
| 239 |
-
|
| 240 |
-
|
| 241 |
-
|
| 242 |
-
|
| 243 |
-
|
| 244 |
-
|
| 245 |
-
|
| 246 |
-
|
| 247 |
-
|
| 248 |
-
|
| 249 |
-
|
| 250 |
-
|
| 251 |
-
|
| 252 |
-
|
| 253 |
-
|
| 254 |
-
|
| 255 |
-
|
| 256 |
-
|
| 257 |
-
|
| 258 |
-
|
| 259 |
-
|
| 260 |
-
|
| 261 |
-
|
| 262 |
-
|
| 263 |
-
|
| 264 |
-
|
| 265 |
-
|
| 266 |
-
|
| 267 |
-
|
| 268 |
-
|
| 269 |
-
|
| 270 |
-
|
| 271 |
-
|
| 272 |
-
|
| 273 |
-
|
| 274 |
-
|
| 275 |
-
|
| 276 |
-
|
| 277 |
-
|
| 278 |
-
|
| 279 |
-
|
| 280 |
-
|
| 281 |
-
|
| 282 |
-
|
| 283 |
-
|
| 284 |
-
|
| 285 |
-
|
| 286 |
-
|
| 287 |
-
|
| 288 |
-
|
| 289 |
-
|
| 290 |
-
|
| 291 |
-
|
| 292 |
-
|
| 293 |
-
|
| 294 |
-
|
| 295 |
-
|
| 296 |
-
|
| 297 |
-
|
| 298 |
-
|
| 299 |
-
|
| 300 |
-
|
| 301 |
-
|
| 302 |
-
|
| 303 |
-
|
| 304 |
-
|
| 305 |
-
|
| 306 |
-
|
| 307 |
-
|
| 308 |
-
|
| 309 |
-
|
| 310 |
-
|
| 311 |
-
|
| 312 |
-
|
| 313 |
-
|
| 314 |
-
|
| 315 |
-
|
| 316 |
-
|
| 317 |
-
|
| 318 |
-
|
| 319 |
-
|
| 320 |
-
|
| 321 |
-
|
| 322 |
-
|
| 323 |
-
|
| 324 |
-
|
| 325 |
-
|
| 326 |
-
|
| 327 |
-
|
| 328 |
-
|
| 329 |
-
|
| 330 |
-
|
| 331 |
-
|
| 332 |
-
|
| 333 |
-
|
| 334 |
-
|
| 335 |
-
|
| 336 |
-
|
| 337 |
-
|
| 338 |
-
def
|
| 339 |
-
|
| 340 |
-
|
| 341 |
-
|
| 342 |
-
|
| 343 |
-
|
| 344 |
-
|
| 345 |
-
|
| 346 |
-
|
| 347 |
-
|
| 348 |
-
|
| 349 |
-
|
| 350 |
-
|
| 351 |
-
|
| 352 |
-
|
| 353 |
-
|
| 354 |
-
|
| 355 |
-
|
| 356 |
-
|
| 357 |
-
|
| 358 |
-
|
| 359 |
-
|
| 360 |
-
|
| 361 |
-
|
| 362 |
-
|
| 363 |
-
|
| 364 |
-
|
| 365 |
-
|
| 366 |
-
|
| 367 |
-
|
| 368 |
-
|
| 369 |
-
|
| 370 |
-
|
| 371 |
-
|
| 372 |
-
|
| 373 |
-
|
| 374 |
-
|
| 375 |
-
|
| 376 |
-
|
| 377 |
-
|
| 378 |
-
|
| 379 |
-
|
| 380 |
-
|
| 381 |
-
|
| 382 |
-
|
| 383 |
-
|
| 384 |
-
|
| 385 |
-
|
| 386 |
-
|
| 387 |
-
|
| 388 |
-
|
| 389 |
-
|
| 390 |
-
|
| 391 |
-
|
| 392 |
-
|
| 393 |
-
|
| 394 |
-
|
| 395 |
-
|
| 396 |
-
|
| 397 |
-
|
| 398 |
-
|
| 399 |
-
|
| 400 |
-
|
| 401 |
-
|
| 402 |
-
|
| 403 |
-
|
| 404 |
-
|
| 405 |
-
|
| 406 |
-
|
| 407 |
-
|
| 408 |
-
|
| 409 |
-
|
| 410 |
-
|
| 411 |
-
|
| 412 |
-
|
| 413 |
-
|
| 414 |
-
|
| 415 |
-
|
| 416 |
-
|
| 417 |
-
|
| 418 |
-
|
| 419 |
-
|
| 420 |
-
|
| 421 |
-
|
| 422 |
-
|
| 423 |
-
|
| 424 |
-
|
| 425 |
-
|
| 426 |
-
|
| 427 |
-
|
| 428 |
-
|
| 429 |
-
|
| 430 |
-
|
| 431 |
-
|
| 432 |
-
|
| 433 |
-
|
| 434 |
-
|
| 435 |
-
|
| 436 |
-
|
| 437 |
-
|
| 438 |
-
|
| 439 |
-
|
| 440 |
-
|
| 441 |
-
|
| 442 |
-
|
| 443 |
-
|
| 444 |
-
|
| 445 |
-
|
| 446 |
-
|
| 447 |
-
|
| 448 |
-
|
| 449 |
-
|
| 450 |
-
|
| 451 |
-
|
| 452 |
-
|
| 453 |
-
|
| 454 |
-
|
| 455 |
-
|
| 456 |
-
|
| 457 |
-
|
| 458 |
-
|
| 459 |
-
|
| 460 |
-
|
| 461 |
-
|
| 462 |
-
|
| 463 |
-
|
| 464 |
-
|
| 465 |
-
|
| 466 |
-
|
| 467 |
-
|
| 468 |
-
|
| 469 |
-
|
| 470 |
-
|
| 471 |
-
|
| 472 |
-
|
| 473 |
-
|
| 474 |
-
|
| 475 |
-
|
| 476 |
-
|
| 477 |
-
|
| 478 |
-
|
| 479 |
-
|
| 480 |
-
|
| 481 |
-
|
| 482 |
-
|
| 483 |
-
|
| 484 |
-
|
| 485 |
-
|
| 486 |
-
|
| 487 |
-
|
| 488 |
-
|
| 489 |
-
|
| 490 |
-
|
| 491 |
-
|
| 492 |
-
|
| 493 |
-
|
| 494 |
-
|
| 495 |
-
|
| 496 |
-
|
| 497 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
+
import spaces
|
| 2 |
+
import os, gc, json, uuid, time, datetime, re, urllib, tempfile, math, inspect
|
| 3 |
+
from typing import Any, Tuple, Dict, List, Optional, Iterator
|
| 4 |
+
from dataclasses import dataclass, field
|
| 5 |
+
from pathlib import Path
|
| 6 |
+
from PIL import Image, PngImagePlugin
|
| 7 |
+
import torch
|
| 8 |
+
import numpy as np
|
| 9 |
+
import gradio as gr
|
| 10 |
+
from huggingface_hub import HfApi, hf_hub_download
|
| 11 |
+
from safetensors.torch import load_file
|
| 12 |
+
from diffusers import (AutoPipelineForText2Image, AutoPipelineForImage2Image, AutoPipelineForInpainting, DiffusionPipeline,
|
| 13 |
+
StableDiffusionPipeline, StableDiffusionImg2ImgPipeline, StableDiffusionControlNetInpaintPipeline,
|
| 14 |
+
StableDiffusionXLPipeline, StableDiffusionXLImg2ImgPipeline, FluxPipeline, FluxImg2ImgPipeline, FluxInpaintPipeline, AutoencoderKL)
|
| 15 |
+
from t2i.controlnet_union.pipeline.pipeline_controlnet_union_inpaint_sd_xl import StableDiffusionXLControlNetUnionInpaintPipeline
|
| 16 |
+
from t2i_config import STORAGE_MAX_GIB, IS_DEBUG, ATTENTION_BACKEND, ATTENTION_BACKEND_NON_HOPPER
|
| 17 |
+
|
| 18 |
+
|
| 19 |
+
DEFAULT_STR = "Default"
|
| 20 |
+
IS_ZEROGPU = True if os.getenv("SPACES_ZERO_GPU", None) else False
|
| 21 |
+
DEVICE = "cuda" if torch.cuda.is_available() else "cpu"
|
| 22 |
+
DTYPE = torch.bfloat16 if torch.cuda.is_available() else torch.float32
|
| 23 |
+
IS_QUANT = False if IS_ZEROGPU else False # https://huggingface.co/posts/cbensimon/565026286160860#684a4147f1e1efa28f85ba5c
|
| 24 |
+
MAX_SEED = np.iinfo(np.int32).max
|
| 25 |
+
MAX_IMAGE_SIZE = 2048 #1216
|
| 26 |
+
PIPELINE_TYPES = ["Default", "Long Prompt Weighting"]
|
| 27 |
+
DEFAULT_VAE = DEFAULT_STR
|
| 28 |
+
PARAM_MODES = ["Auto", "Default", "Custom"]
|
| 29 |
+
DEFAULT_I2I_STRENGTH = 0.8
|
| 30 |
+
DEFAULT_UPSCALE_STRENGTH = 0.55
|
| 31 |
+
DEFAULT_UPSCALE_BY = 1.5
|
| 32 |
+
DEFAULT_CLIP_SKIP = 2
|
| 33 |
+
|
| 34 |
+
# Attention backend switching (Diffusers attention dispatcher)
|
| 35 |
+
# Works across SD1.5/SDXL/FLUX by applying to any component that supports set_attention_backend().
|
| 36 |
+
# Config lives in t2i_config.py (ATTENTION_BACKEND, ATTENTION_BACKEND_NON_HOPPER).
|
| 37 |
+
def _is_hopper_gpu() -> bool:
|
| 38 |
+
if not torch.cuda.is_available():
|
| 39 |
+
return False
|
| 40 |
+
try:
|
| 41 |
+
major, minor = torch.cuda.get_device_capability()
|
| 42 |
+
return major >= 9 # SM90+ (Hopper)
|
| 43 |
+
except Exception:
|
| 44 |
+
return False
|
| 45 |
+
|
| 46 |
+
|
| 47 |
+
def _resolve_attention_backend() -> Optional[str]:
|
| 48 |
+
backend = ATTENTION_BACKEND
|
| 49 |
+
if backend is None:
|
| 50 |
+
return None
|
| 51 |
+
backend = str(backend).strip()
|
| 52 |
+
if backend == "":
|
| 53 |
+
return None
|
| 54 |
+
if backend.lower() == "auto":
|
| 55 |
+
return "_flash_3_hub" if _is_hopper_gpu() else (ATTENTION_BACKEND_NON_HOPPER or "flash_hub")
|
| 56 |
+
return backend
|
| 57 |
+
|
| 58 |
+
|
| 59 |
+
def _iter_attention_targets(pipe: Any) -> Iterator[Any]:
|
| 60 |
+
# common attributes
|
| 61 |
+
for name in ["unet", "transformer", "controlnet"]:
|
| 62 |
+
if hasattr(pipe, name):
|
| 63 |
+
obj = getattr(pipe, name)
|
| 64 |
+
if obj is None:
|
| 65 |
+
continue
|
| 66 |
+
if isinstance(obj, (list, tuple, set)):
|
| 67 |
+
for o in obj:
|
| 68 |
+
if o is not None:
|
| 69 |
+
yield o
|
| 70 |
+
elif isinstance(obj, dict):
|
| 71 |
+
for o in obj.values():
|
| 72 |
+
if o is not None:
|
| 73 |
+
yield o
|
| 74 |
+
else:
|
| 75 |
+
yield obj
|
| 76 |
+
|
| 77 |
+
# pipeline.components (dict)
|
| 78 |
+
if hasattr(pipe, "components"):
|
| 79 |
+
try:
|
| 80 |
+
comps = getattr(pipe, "components")
|
| 81 |
+
if isinstance(comps, dict):
|
| 82 |
+
for o in comps.values():
|
| 83 |
+
if o is None:
|
| 84 |
+
continue
|
| 85 |
+
if isinstance(o, (list, tuple, set)):
|
| 86 |
+
for x in o:
|
| 87 |
+
if x is not None:
|
| 88 |
+
yield x
|
| 89 |
+
elif isinstance(o, dict):
|
| 90 |
+
for x in o.values():
|
| 91 |
+
if x is not None:
|
| 92 |
+
yield x
|
| 93 |
+
else:
|
| 94 |
+
yield o
|
| 95 |
+
except Exception:
|
| 96 |
+
pass
|
| 97 |
+
|
| 98 |
+
|
| 99 |
+
def apply_attention_backend(pipe: Any) -> bool:
|
| 100 |
+
backend = _resolve_attention_backend()
|
| 101 |
+
if not backend:
|
| 102 |
+
return False
|
| 103 |
+
|
| 104 |
+
prev = getattr(pipe, "_t2i_attention_backend", None)
|
| 105 |
+
if prev == backend:
|
| 106 |
+
return False
|
| 107 |
+
|
| 108 |
+
applied: List[str] = []
|
| 109 |
+
seen = set()
|
| 110 |
+
|
| 111 |
+
for obj in _iter_attention_targets(pipe):
|
| 112 |
+
oid = id(obj)
|
| 113 |
+
if oid in seen:
|
| 114 |
+
continue
|
| 115 |
+
seen.add(oid)
|
| 116 |
+
|
| 117 |
+
if not hasattr(obj, "set_attention_backend"):
|
| 118 |
+
continue
|
| 119 |
+
|
| 120 |
+
try:
|
| 121 |
+
obj.set_attention_backend(backend)
|
| 122 |
+
applied.append(type(obj).__name__)
|
| 123 |
+
except Exception as e:
|
| 124 |
+
logger.debug(f"set_attention_backend({backend}) failed on {type(obj).__name__}: {e}")
|
| 125 |
+
|
| 126 |
+
if applied:
|
| 127 |
+
pipe._t2i_attention_backend = backend
|
| 128 |
+
logger.debug(f"Attention backend set to {backend} on {list_uniq_order(applied)}.")
|
| 129 |
+
return True
|
| 130 |
+
|
| 131 |
+
logger.debug(f"Attention backend {backend} was not applied (no compatible components).")
|
| 132 |
+
pipe._t2i_attention_backend = None
|
| 133 |
+
return False
|
| 134 |
+
|
| 135 |
+
|
| 136 |
+
def get_logger():
|
| 137 |
+
import logging
|
| 138 |
+
from pytz import timezone
|
| 139 |
+
from datetime import datetime
|
| 140 |
+
logger = logging.getLogger(__name__)
|
| 141 |
+
if IS_DEBUG: logger.setLevel(logging.DEBUG)
|
| 142 |
+
else: logger.setLevel(logging.INFO)
|
| 143 |
+
sh = logging.StreamHandler()
|
| 144 |
+
sh.setLevel(logging.DEBUG if IS_DEBUG else logging.INFO)
|
| 145 |
+
def customTime(*args):
|
| 146 |
+
return datetime.now(timezone('Asia/Tokyo')).timetuple()
|
| 147 |
+
formatter = logging.Formatter(
|
| 148 |
+
fmt='%(levelname)s : %(asctime)s : %(message)s',
|
| 149 |
+
datefmt="%Y-%m-%d %H:%M:%S %z"
|
| 150 |
+
)
|
| 151 |
+
formatter.converter = customTime
|
| 152 |
+
sh.setFormatter(formatter)
|
| 153 |
+
logger.addHandler(sh)
|
| 154 |
+
return logger
|
| 155 |
+
|
| 156 |
+
|
| 157 |
+
logger = get_logger()
|
| 158 |
+
|
| 159 |
+
|
| 160 |
+
def get_token() -> Any:
|
| 161 |
+
return os.getenv("HF_TOKEN", None)
|
| 162 |
+
|
| 163 |
+
|
| 164 |
+
def list_uniq_order(l: list) -> List:
|
| 165 |
+
return list(dict.fromkeys(l))
|
| 166 |
+
|
| 167 |
+
|
| 168 |
+
def free_memory():
|
| 169 |
+
if torch.cuda.is_available():
|
| 170 |
+
torch.cuda.empty_cache()
|
| 171 |
+
#torch.cuda.ipc_collect()
|
| 172 |
+
gc.collect()
|
| 173 |
+
|
| 174 |
+
|
| 175 |
+
def calc_module_size(model: torch.nn.Module) -> int:
|
| 176 |
+
param_size = 0
|
| 177 |
+
for param in model.parameters():
|
| 178 |
+
param_size += param.nelement() * param.element_size()
|
| 179 |
+
buffer_size = 0
|
| 180 |
+
for buffer in model.buffers():
|
| 181 |
+
buffer_size += buffer.nelement() * buffer.element_size()
|
| 182 |
+
return int(buffer_size + param_size)
|
| 183 |
+
|
| 184 |
+
|
| 185 |
+
def calc_pipe_size(pipe: Any) -> int:
|
| 186 |
+
return sum([calc_module_size(m) for m in pipe.components.values() if isinstance(m, torch.nn.Module)])
|
| 187 |
+
|
| 188 |
+
|
| 189 |
+
def calc_pix_8(x: float) -> int:
|
| 190 |
+
y = math.ceil(x)
|
| 191 |
+
return y - (y % 8)
|
| 192 |
+
|
| 193 |
+
|
| 194 |
+
def calc_pix_64(x: float) -> int:
|
| 195 |
+
y = math.ceil(x)
|
| 196 |
+
return y - (y % 64)
|
| 197 |
+
|
| 198 |
+
|
| 199 |
+
WEIGHT_EXTS = [".safetensors", ".sft", ".bin", ".pth"]
|
| 200 |
+
|
| 201 |
+
|
| 202 |
+
def is_weight_url(url: str) -> bool:
|
| 203 |
+
if "http" not in url: return False
|
| 204 |
+
for ext in WEIGHT_EXTS:
|
| 205 |
+
if ext in url: return True
|
| 206 |
+
return False
|
| 207 |
+
|
| 208 |
+
|
| 209 |
+
def read_safetensors_key(path: str) -> List[str]:
|
| 210 |
+
try:
|
| 211 |
+
keys = []
|
| 212 |
+
state_dict = load_file(str(Path(path)))
|
| 213 |
+
for k in list(state_dict.keys()):
|
| 214 |
+
keys.append(k)
|
| 215 |
+
state_dict.pop(k)
|
| 216 |
+
except Exception as e:
|
| 217 |
+
logger.info(f"{inspect.currentframe().f_code.co_name}: {e}")
|
| 218 |
+
finally:
|
| 219 |
+
del state_dict
|
| 220 |
+
free_memory()
|
| 221 |
+
return keys
|
| 222 |
+
|
| 223 |
+
|
| 224 |
+
def split_hf_url(url: str) -> Tuple[Optional[str], Optional[str], Optional[str], Optional[str]]:
|
| 225 |
+
try:
|
| 226 |
+
s = list(re.findall(r'^(?:(?:https?://huggingface.co/)|(?:https?://hf.co/))(?:(datasets|spaces)/)?(.+?/.+?)/\w+?/.+?/(?:(.+)/)?(.+?.\w+)(?:\?download=true)?$', url)[0])
|
| 227 |
+
if len(s) < 4: return "", "", "", ""
|
| 228 |
+
repo_id = s[1]
|
| 229 |
+
if s[0] == "datasets": repo_type = "dataset"
|
| 230 |
+
elif s[0] == "spaces": repo_type = "space"
|
| 231 |
+
else: repo_type = "model"
|
| 232 |
+
subfolder = urllib.parse.unquote(s[2]) if s[2] else None
|
| 233 |
+
filename = urllib.parse.unquote(s[3])
|
| 234 |
+
return repo_id, filename, subfolder, repo_type
|
| 235 |
+
except Exception as e:
|
| 236 |
+
logger.info(f"{inspect.currentframe().f_code.co_name}: {e}")
|
| 237 |
+
return "", "", None, ""
|
| 238 |
+
|
| 239 |
+
|
| 240 |
+
def download_hf_file(directory, url, progress=gr.Progress(track_tqdm=True)) -> Optional[str]:
|
| 241 |
+
hf_token = get_token()
|
| 242 |
+
repo_id, filename, subfolder, repo_type = split_hf_url(url)
|
| 243 |
+
if not repo_id:
|
| 244 |
+
logger.info(f"Failed to download {url}")
|
| 245 |
+
return None
|
| 246 |
+
try:
|
| 247 |
+
logger.debug(f"Downloading {url} to {directory}")
|
| 248 |
+
if subfolder is not None: path = hf_hub_download(repo_id=repo_id, filename=filename, subfolder=subfolder, repo_type=repo_type, local_dir=directory, token=hf_token)
|
| 249 |
+
else: path = hf_hub_download(repo_id=repo_id, filename=filename, repo_type=repo_type, local_dir=directory, token=hf_token)
|
| 250 |
+
return path
|
| 251 |
+
except Exception as e:
|
| 252 |
+
logger.info(f"Failed to download {e}")
|
| 253 |
+
return None
|
| 254 |
+
|
| 255 |
+
|
| 256 |
+
@dataclass(order=True)
|
| 257 |
+
class LocalFile:
|
| 258 |
+
path: str = ""
|
| 259 |
+
url: str = ""
|
| 260 |
+
lastmod: float = 0.
|
| 261 |
+
size: int = 0
|
| 262 |
+
keys: list = field(default_factory=list)
|
| 263 |
+
|
| 264 |
+
def __str__(self):
|
| 265 |
+
return f"{self.path} ({self.url}) Size:{float(self.size) / (1024.**3):.2f}GiB LastMod.:{datetime.datetime.fromtimestamp(self.lastmod).strftime('%Y/%m/%d %H:%M:%S')}"
|
| 266 |
+
|
| 267 |
+
def __del__(self):
|
| 268 |
+
delpath = Path(self.path)
|
| 269 |
+
if delpath.exists() and delpath.is_file(): delpath.unlink()
|
| 270 |
+
logger.debug(f"Deleted {self.path}.")
|
| 271 |
+
|
| 272 |
+
|
| 273 |
+
class LocalFiles:
|
| 274 |
+
def __init__(self):
|
| 275 |
+
self.files: Dict[str, LocalFile] = {}
|
| 276 |
+
self.temp_dir = tempfile.mkdtemp()
|
| 277 |
+
self.max_gib = STORAGE_MAX_GIB
|
| 278 |
+
|
| 279 |
+
def __call__(self, url: str) -> Optional[str]:
|
| 280 |
+
try:
|
| 281 |
+
if url in self.files.keys():
|
| 282 |
+
self.files[url].lastmod = time.time()
|
| 283 |
+
return self.files[url].path
|
| 284 |
+
path = download_hf_file(self.temp_dir, url)
|
| 285 |
+
if not path: return None
|
| 286 |
+
self.files[url] = LocalFile(path=path, url=url, lastmod=time.time(), size=os.path.getsize(Path(path)), keys=read_safetensors_key(path))
|
| 287 |
+
logger.info(f"Downloaded {self.files[url]}.")
|
| 288 |
+
self.clean()
|
| 289 |
+
return path
|
| 290 |
+
except Exception as e:
|
| 291 |
+
logger.debug(f"{inspect.currentframe().f_code.co_name}: {e}")
|
| 292 |
+
return None
|
| 293 |
+
|
| 294 |
+
def __str__(self):
|
| 295 |
+
return "\n".join([str(x) for x in self.files.values()])
|
| 296 |
+
|
| 297 |
+
def clean(self):
|
| 298 |
+
items = sorted(list(self.files.values()), key=lambda x:x.lastmod, reverse=True)
|
| 299 |
+
sum_bytes = 0
|
| 300 |
+
max_bytes = self.max_gib * (1024 ** 3)
|
| 301 |
+
del_items = []
|
| 302 |
+
for item in items:
|
| 303 |
+
sum_bytes += item.size
|
| 304 |
+
if sum_bytes > max_bytes: del_items.append(item.name)
|
| 305 |
+
for item in del_items:
|
| 306 |
+
self.files.pop(item)
|
| 307 |
+
|
| 308 |
+
def get_keys(self, url: str) -> Optional[list[str]]:
|
| 309 |
+
if url not in self.files.keys(): self.__call__(url)
|
| 310 |
+
return self.files[url].keys if url in self.files.keys() else None
|
| 311 |
+
|
| 312 |
+
|
| 313 |
+
local_files = LocalFiles()
|
| 314 |
+
|
| 315 |
+
|
| 316 |
+
def get_file(url: str) -> Optional[str]:
|
| 317 |
+
path = local_files(url)
|
| 318 |
+
return path
|
| 319 |
+
|
| 320 |
+
|
| 321 |
+
def get_file_keys(url: str) -> Optional[List[str]]:
|
| 322 |
+
return local_files.get_keys(url)
|
| 323 |
+
|
| 324 |
+
|
| 325 |
+
MODEL_TYPE_CLASS = {
|
| 326 |
+
"diffusers:StableDiffusionPipeline": "SD 1.5",
|
| 327 |
+
"diffusers:StableDiffusionXLPipeline": "SDXL",
|
| 328 |
+
"diffusers:FluxPipeline": "FLUX",
|
| 329 |
+
}
|
| 330 |
+
|
| 331 |
+
|
| 332 |
+
PIPELINE_TO_TYPE = {k.replace("diffusers:", ""): v for k, v in MODEL_TYPE_CLASS.items()}
|
| 333 |
+
MODEL_TYPE_VALUES = list(MODEL_TYPE_CLASS.values())
|
| 334 |
+
DEFAULT_MODEL_TYPE = "Auto"
|
| 335 |
+
MODEL_TYPES = [DEFAULT_MODEL_TYPE] + MODEL_TYPE_VALUES
|
| 336 |
+
|
| 337 |
+
|
| 338 |
+
def get_model_type_from_repo_id(repo_id: str) -> str:
|
| 339 |
+
api = HfApi(token=get_token())
|
| 340 |
+
default = "SDXL"
|
| 341 |
+
try:
|
| 342 |
+
model = api.model_info(repo_id=repo_id, timeout=5.0)
|
| 343 |
+
tags = model.tags
|
| 344 |
+
for tag in tags:
|
| 345 |
+
if tag in MODEL_TYPE_CLASS.keys(): return MODEL_TYPE_CLASS.get(tag, default)
|
| 346 |
+
except Exception:
|
| 347 |
+
return default
|
| 348 |
+
return default
|
| 349 |
+
|
| 350 |
+
|
| 351 |
+
MODEL_TYPE_KEY = {
|
| 352 |
+
"model.diffusion_model.output_blocks.1.1.norm.bias": "SDXL",
|
| 353 |
+
"model.diffusion_model.input_blocks.11.0.out_layers.3.weight": "SD 1.5",
|
| 354 |
+
"double_blocks.0.img_attn.norm.key_norm.scale": "FLUX",
|
| 355 |
+
"model.diffusion_model.double_blocks.0.img_attn.norm.key_norm.scale": "FLUX",
|
| 356 |
+
"model.diffusion_model.joint_blocks.9.x_block.attn.ln_k.weight": "SD 3.5",
|
| 357 |
+
}
|
| 358 |
+
|
| 359 |
+
|
| 360 |
+
def get_model_type_from_key(url: str) -> str:
|
| 361 |
+
default = "SDXL"
|
| 362 |
+
try:
|
| 363 |
+
keys = get_file_keys(url)
|
| 364 |
+
for k, v in MODEL_TYPE_KEY.items():
|
| 365 |
+
if k in set(keys): return v
|
| 366 |
+
except Exception:
|
| 367 |
+
return default
|
| 368 |
+
return default
|
| 369 |
+
|
| 370 |
+
|
| 371 |
+
def get_model_type_from_url(url: str) -> str:
|
| 372 |
+
default = "SDXL"
|
| 373 |
+
try:
|
| 374 |
+
return get_model_type_from_key(url)
|
| 375 |
+
except Exception:
|
| 376 |
+
return default
|
| 377 |
+
|
| 378 |
+
|
| 379 |
+
def get_model_type(name: str) -> str:
|
| 380 |
+
model_type = DEFAULT_MODEL_TYPE
|
| 381 |
+
try:
|
| 382 |
+
if is_weight_url(name): model_type = get_model_type_from_url(name)
|
| 383 |
+
else: model_type = get_model_type_from_repo_id(name)
|
| 384 |
+
except Exception as e:
|
| 385 |
+
logger.info(f"{inspect.currentframe().f_code.co_name}: {e}")
|
| 386 |
+
finally:
|
| 387 |
+
logger.debug(f"{name} is determined as {model_type}.")
|
| 388 |
+
return model_type
|
| 389 |
+
|
| 390 |
+
|
| 391 |
+
def get_model_type_from_pipe(pipe: Any) -> str:
|
| 392 |
+
model_type = PIPELINE_TO_TYPE.get(type(pipe).__name__, DEFAULT_MODEL_TYPE)
|
| 393 |
+
logger.debug(f"{type(pipe).__name__} is determined as {model_type}.")
|
| 394 |
+
return model_type
|
| 395 |
+
|
| 396 |
+
|
| 397 |
+
AR_TO_REZ = {
|
| 398 |
+
"1:1 (Square)": "1024x1024",
|
| 399 |
+
"3:2 (Landscape)": "1216x832",
|
| 400 |
+
"2:3 (Portrait)": "832x1216",
|
| 401 |
+
"16:9 (HD TV)": "1344x768",
|
| 402 |
+
"9:16 (Selfie)": "768x1344",
|
| 403 |
+
"4:3 (SD TV)": "1152x896",
|
| 404 |
+
"3:4 (Standard)": "896x1152",
|
| 405 |
+
"21:9 (Cinema)": "1536x640",
|
| 406 |
+
"9:21": "640x1536",
|
| 407 |
+
"3:1": "1728x576",
|
| 408 |
+
"1:3": "576x1728",
|
| 409 |
+
"4:1": "2048x512",
|
| 410 |
+
"1:4": "512x2048"
|
| 411 |
+
}
|
| 412 |
+
SDXL_REZ = [s for s in AR_TO_REZ.values()]
|
| 413 |
+
AR_CUSTOM = "Custom"
|
| 414 |
+
ASPECT_RATIOS = [AR_CUSTOM] + [s for s in AR_TO_REZ.keys()]
|
| 415 |
+
MODEL_TYPE_REZ = {"SDXL": 1024, "SD 1.5": 512, "FLUX": 1024}
|
| 416 |
+
|
| 417 |
+
|
| 418 |
+
def get_rez_from_ar(ar: str, type: str="SDXL", sw: int=1024, sh: int=1024) -> Tuple[int, int]:
|
| 419 |
+
if ar == AR_CUSTOM: return sw, sh
|
| 420 |
+
br = AR_TO_REZ.get(ar, SDXL_REZ[0])
|
| 421 |
+
bw, bh = int(br.split("x")[0]), int(br.split("x")[1])
|
| 422 |
+
sr = 1024 # SDXL
|
| 423 |
+
tr = MODEL_TYPE_REZ.get(type, 1024)
|
| 424 |
+
return calc_pix_64(bw * tr / sr), calc_pix_64(bh * tr / sr)
|
| 425 |
+
|
| 426 |
+
|
| 427 |
+
def update_ar_gr(ar: str):
|
| 428 |
+
if ar == AR_CUSTOM: return gr.update(visible=True), gr.update(visible=True)
|
| 429 |
+
else: return gr.update(visible=False), gr.update(visible=False)
|
| 430 |
+
|
| 431 |
+
|
| 432 |
+
AUTO_PARAM_DICT = {
|
| 433 |
+
"SD 1.5": {"guidance_scale": 7., "num_inference_steps": 50},
|
| 434 |
+
"SDXL": {"guidance_scale": 7., "num_inference_steps": 28},
|
| 435 |
+
"FLUX": {"guidance_scale": 3.5, "num_inference_steps": 28},
|
| 436 |
+
}
|
| 437 |
+
|
| 438 |
+
|
| 439 |
+
def get_auto_param(type: str) -> Dict:
|
| 440 |
+
param = AUTO_PARAM_DICT.get(type, {})
|
| 441 |
+
return param
|
| 442 |
+
|
| 443 |
+
|
| 444 |
+
def update_param_mode_gr(mode: str):
|
| 445 |
+
if mode in ["Auto", "Default"]: return gr.update(visible=False), gr.update(visible=False)
|
| 446 |
+
else: return gr.update(visible=True), gr.update(visible=True)
|
| 447 |
+
|
| 448 |
+
|
| 449 |
+
TASK_T2I = "Text-to-Image"
|
| 450 |
+
TASK_I2I = "Image-to-Image"
|
| 451 |
+
TASK_INPAINT = "Inpaint"
|
| 452 |
+
DEFAULT_PIPE_CLASS = "Auto"
|
| 453 |
+
|
| 454 |
+
|
| 455 |
+
DIFFUSERS_TASK = {
|
| 456 |
+
DEFAULT_PIPE_CLASS: {
|
| 457 |
+
TASK_T2I: AutoPipelineForText2Image,
|
| 458 |
+
TASK_I2I: AutoPipelineForImage2Image,
|
| 459 |
+
TASK_INPAINT: AutoPipelineForInpainting,
|
| 460 |
+
},
|
| 461 |
+
"SD 1.5": {
|
| 462 |
+
TASK_T2I: StableDiffusionPipeline,
|
| 463 |
+
TASK_I2I: StableDiffusionImg2ImgPipeline,
|
| 464 |
+
TASK_INPAINT: StableDiffusionControlNetInpaintPipeline,
|
| 465 |
+
},
|
| 466 |
+
"SDXL": {
|
| 467 |
+
TASK_T2I: StableDiffusionXLPipeline,
|
| 468 |
+
TASK_I2I: StableDiffusionXLImg2ImgPipeline,
|
| 469 |
+
TASK_INPAINT: StableDiffusionXLControlNetUnionInpaintPipeline,
|
| 470 |
+
},
|
| 471 |
+
"FLUX": {
|
| 472 |
+
TASK_T2I: FluxPipeline,
|
| 473 |
+
TASK_I2I: FluxImg2ImgPipeline,
|
| 474 |
+
TASK_INPAINT: FluxInpaintPipeline,
|
| 475 |
+
},
|
| 476 |
+
}
|
| 477 |
+
|
| 478 |
+
|
| 479 |
+
def get_tasks(model_type: str=DEFAULT_PIPE_CLASS) -> List[str]:
|
| 480 |
+
if model_type not in DIFFUSERS_TASK.keys(): model_type = DEFAULT_PIPE_CLASS
|
| 481 |
+
return [x for x in DIFFUSERS_TASK.get(model_type, DEFAULT_PIPE_CLASS).keys()]
|
| 482 |
+
|
| 483 |
+
|
| 484 |
+
def get_task_class(model_type: str, task: str) -> Any:
|
| 485 |
+
if model_type not in DIFFUSERS_TASK.keys(): model_type = DEFAULT_PIPE_CLASS
|
| 486 |
+
try:
|
| 487 |
+
return DIFFUSERS_TASK[model_type][task]
|
| 488 |
+
except Exception as e:
|
| 489 |
+
logger.info(f"{inspect.currentframe().f_code.co_name}: {e}")
|
| 490 |
+
return DIFFUSERS_TASK[DEFAULT_PIPE_CLASS][task]
|
| 491 |
+
|
| 492 |
+
|
| 493 |
+
DEFAULT_TASKS = get_tasks()
|
| 494 |
+
KNOWN_PIPE_CLASS = [x for x in DIFFUSERS_TASK.keys() if x != DEFAULT_PIPE_CLASS]
|
| 495 |
+
|
| 496 |
+
|
| 497 |
+
HF_DEFAULT_STEPS = 50
|
| 498 |
+
DEFAULT_INFER_TIME = 10.
|
| 499 |
+
MODEL_INFER_TIME = {"SD 1.5": 5.0, "SDXL": 8.5}
|
| 500 |
+
|
| 501 |
+
|
| 502 |
+
def get_final_steps(type: str, mode: str, steps: int) -> int:
|
| 503 |
+
if mode not in ["Default", "Auto"]: return steps
|
| 504 |
+
if mode == "Auto":
|
| 505 |
+
param = get_auto_param(type)
|
| 506 |
+
s = param.get("num_inference_steps", None)
|
| 507 |
+
if s is None: return HF_DEFAULT_STEPS
|
| 508 |
+
else: return s
|
| 509 |
+
elif mode == "Default": return HF_DEFAULT_STEPS
|
| 510 |
+
return steps
|
| 511 |
+
|
| 512 |
+
|
| 513 |
+
def estimate_model_infer_time(type: str=DEFAULT_MODEL_TYPE, task: str=DEFAULT_TASKS[0], mode: str=PARAM_MODES[0], steps: int=HF_DEFAULT_STEPS) -> float:
|
| 514 |
+
steps = get_final_steps(type, mode, steps)
|
| 515 |
+
base_time = MODEL_INFER_TIME.get(type, DEFAULT_INFER_TIME)
|
| 516 |
+
time = (base_time * 0.25) + (base_time * 0.75 * float(steps) / float(HF_DEFAULT_STEPS))
|
| 517 |
+
if task == TASK_INPAINT: time *= 3. if type == "SD 1.5" else 1.5
|
| 518 |
+
elif task == TASK_I2I: time *= 1.5
|
| 519 |
+
return time
|
| 520 |
+
|
| 521 |
+
|
| 522 |
+
def resize_ref_image(image: Image.Image) -> Image.Image:
|
| 523 |
+
MIN_SIZE = 256
|
| 524 |
+
try:
|
| 525 |
+
ow, oh = image.size
|
| 526 |
+
if ow > oh:
|
| 527 |
+
tw = max(calc_pix_8(ow), MIN_SIZE)
|
| 528 |
+
th = calc_pix_8(tw * oh / ow)
|
| 529 |
+
else:
|
| 530 |
+
th = max(calc_pix_8(oh), MIN_SIZE)
|
| 531 |
+
tw = calc_pix_8(th * ow / oh)
|
| 532 |
+
return image.resize((tw, th), Image.LANCZOS)
|
| 533 |
+
except Exception as e:
|
| 534 |
+
logger.info(f"{inspect.currentframe().f_code.co_name}: {e}")
|
| 535 |
+
return image
|
| 536 |
+
|
| 537 |
+
|
| 538 |
+
def get_image_mask(image_dict: Optional[Dict]) -> Tuple[Optional[Image.Image], Optional[Image.Image]]:
|
| 539 |
+
image, mask = None, None
|
| 540 |
+
try:
|
| 541 |
+
if isinstance(image_dict, dict):
|
| 542 |
+
image = image_dict.get("background", None)
|
| 543 |
+
layers = image_dict.get("layers", None)
|
| 544 |
+
mask = layers[0] if layers is not None and len(layers) > 0 else None
|
| 545 |
+
if isinstance(image, str): image = Image.open(image)
|
| 546 |
+
if isinstance(image, Image.Image): image = resize_ref_image(image).convert("RGB")
|
| 547 |
+
if isinstance(mask, str): mask = Image.open(mask)
|
| 548 |
+
if isinstance(mask, Image.Image): mask = resize_ref_image(mask).convert("L")
|
| 549 |
+
except Exception as e:
|
| 550 |
+
logger.info(f"{inspect.currentframe().f_code.co_name}: {e}")
|
| 551 |
+
finally:
|
| 552 |
+
logger.debug(f"Image:{image}, Mask:{mask}")
|
| 553 |
+
return image, mask
|
| 554 |
+
|
| 555 |
+
|
| 556 |
+
FILE_FORMAT_MAP = {"PNG": "png", "WebP": "webp", "JPEG": "jpg"}
|
| 557 |
+
FILE_FORMATS = [x for x in FILE_FORMAT_MAP.keys()]
|
| 558 |
+
|
| 559 |
+
|
| 560 |
+
def save_image(image: Image.Image, metadata: dict, format: str=FILE_FORMATS[0]) -> Optional[str]:
|
| 561 |
+
try:
|
| 562 |
+
ext = FILE_FORMAT_MAP.get(format, "png")
|
| 563 |
+
savefile = f'{metadata["Model"]}_{str(uuid.uuid4())}.{ext}'
|
| 564 |
+
if ext in ["png"]:
|
| 565 |
+
metadata_str = json.dumps(metadata)
|
| 566 |
+
info = PngImagePlugin.PngInfo()
|
| 567 |
+
info.add_text("metadata", metadata_str)
|
| 568 |
+
image.save(savefile, "PNG", pnginfo=info)
|
| 569 |
+
else: image.save(savefile)
|
| 570 |
+
return str(Path(savefile).resolve())
|
| 571 |
+
except Exception as e:
|
| 572 |
+
logger.info(f"Failed to save image file: {e}")
|
| 573 |
+
raise Exception(f"Failed to save image file: {e}") from e
|
| 574 |
+
|
| 575 |
+
|
| 576 |
+
def save_image_history(image: str, gallery: Optional[List], files: Optional[List], progress=gr.Progress(track_tqdm=True)):
|
| 577 |
+
if not gallery: gallery = []
|
| 578 |
+
if not files: files = []
|
| 579 |
+
try:
|
| 580 |
+
if isinstance(image, str):
|
| 581 |
+
files.insert(0, str(Path(image).resolve()))
|
| 582 |
+
gallery.insert(0, (str(Path(image).resolve()), str(Path(image).name)))
|
| 583 |
+
except Exception as e:
|
| 584 |
+
logger.info(f"{inspect.currentframe().f_code.co_name}: {e}")
|
| 585 |
+
finally:
|
| 586 |
+
return gr.update(value=gallery), gr.update(value=files, visible=True)
|
| 587 |
+
|
| 588 |
+
|
| 589 |
+
def save_gallery_history(images: Optional[List], gallery: Optional[List], files: Optional[List], progress=gr.Progress(track_tqdm=True)):
|
| 590 |
+
if not gallery: gallery = []
|
| 591 |
+
if not files: files = []
|
| 592 |
+
try:
|
| 593 |
+
gallery = list_uniq_order(images.copy() + gallery)
|
| 594 |
+
files = [x[0] for x in gallery]
|
| 595 |
+
except Exception as e:
|
| 596 |
+
logger.info(f"{inspect.currentframe().f_code.co_name}: {e}")
|
| 597 |
+
finally:
|
| 598 |
+
return gr.update(value=gallery), gr.update(value=files, visible=True)
|
t2i_config.py
CHANGED
|
@@ -1,30 +1,47 @@
|
|
| 1 |
-
|
| 2 |
-
models = [
|
| 3 |
-
'Yntec/YiffyMix',
|
| 4 |
-
'Raelina/Rae-Diffusion-XL-V2',
|
| 5 |
-
'Raelina/Raemu-XL-V4',
|
| 6 |
-
'Raelina/Raemu-XL-V5',
|
| 7 |
-
'Raelina/Raena-XL-V2',
|
| 8 |
-
'Raelina/Raehoshi-illust-XL',
|
| 9 |
-
'Raelina/Raehoshi-illust-xl-2',
|
| 10 |
-
'Raelina/Raehoshi-Illust-XL-2.1',
|
| 11 |
-
'Raelina/Raehoshi-illust-XL-3',
|
| 12 |
-
'Raelina/Raehoshi-illust-XL-4',
|
| 13 |
-
'Raelina/Raehoshi-illust-XL-8',
|
| 14 |
-
"https://huggingface.co/Yntec/epiCPhotoGasm/blob/main/epiCPhotoGasmVAE.safetensors",
|
| 15 |
-
]
|
| 16 |
-
|
| 17 |
-
|
| 18 |
-
sdxl_vaes = [
|
| 19 |
-
"madebyollin/sdxl-vae-fp16-fix",
|
| 20 |
-
"https://huggingface.co/nubby/blessed-sdxl-vae-fp16-fix/blob/main/sdxl_vae-fp16fix-blessed.safetensors",
|
| 21 |
-
]
|
| 22 |
-
|
| 23 |
-
|
| 24 |
-
sd15_vaes = []
|
| 25 |
-
|
| 26 |
-
|
| 27 |
-
STORAGE_MAX_GIB = 40
|
| 28 |
-
PIPELINE_MAX_GIB = 30
|
| 29 |
-
DEFAULT_DURATION = 0 # if 0, auto
|
| 30 |
-
IS_DEBUG = True
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
+
|
| 2 |
+
models = [
|
| 3 |
+
'Yntec/YiffyMix',
|
| 4 |
+
'Raelina/Rae-Diffusion-XL-V2',
|
| 5 |
+
'Raelina/Raemu-XL-V4',
|
| 6 |
+
'Raelina/Raemu-XL-V5',
|
| 7 |
+
'Raelina/Raena-XL-V2',
|
| 8 |
+
'Raelina/Raehoshi-illust-XL',
|
| 9 |
+
'Raelina/Raehoshi-illust-xl-2',
|
| 10 |
+
'Raelina/Raehoshi-Illust-XL-2.1',
|
| 11 |
+
'Raelina/Raehoshi-illust-XL-3',
|
| 12 |
+
'Raelina/Raehoshi-illust-XL-4',
|
| 13 |
+
'Raelina/Raehoshi-illust-XL-8',
|
| 14 |
+
"https://huggingface.co/Yntec/epiCPhotoGasm/blob/main/epiCPhotoGasmVAE.safetensors",
|
| 15 |
+
]
|
| 16 |
+
|
| 17 |
+
|
| 18 |
+
sdxl_vaes = [
|
| 19 |
+
"madebyollin/sdxl-vae-fp16-fix",
|
| 20 |
+
"https://huggingface.co/nubby/blessed-sdxl-vae-fp16-fix/blob/main/sdxl_vae-fp16fix-blessed.safetensors",
|
| 21 |
+
]
|
| 22 |
+
|
| 23 |
+
|
| 24 |
+
sd15_vaes = []
|
| 25 |
+
|
| 26 |
+
|
| 27 |
+
STORAGE_MAX_GIB = 40
|
| 28 |
+
PIPELINE_MAX_GIB = 30
|
| 29 |
+
DEFAULT_DURATION = 0 # if 0, auto
|
| 30 |
+
IS_DEBUG = True
|
| 31 |
+
|
| 32 |
+
# kernels attention backend (Diffusers attention dispatcher)
|
| 33 |
+
# '' or None: disabled. 'auto': Hopper->'_flash_3_hub' else ATTENTION_BACKEND_NON_HOPPER.
|
| 34 |
+
ATTENTION_BACKEND = 'auto'
|
| 35 |
+
ATTENTION_BACKEND_NON_HOPPER = 'flash_hub'
|
| 36 |
+
|
| 37 |
+
|
| 38 |
+
# kernels hub prefetch (to avoid first-inference heavy download)
|
| 39 |
+
# Notes:
|
| 40 |
+
# - This does not remove the download requirement; it moves it to app startup.
|
| 41 |
+
# - Add more repos if you also use 'flash_hub' (FlashAttention2) or 'sage_hub'.
|
| 42 |
+
KERNELS_PREFETCH_ON_STARTUP = True
|
| 43 |
+
KERNELS_PREFETCH_REPOS = [
|
| 44 |
+
"kernels-community/flash-attn3",
|
| 45 |
+
# "kernels-community/flash-attn2",
|
| 46 |
+
# "kernels-community/sage_attention",
|
| 47 |
+
]
|