- Twin Networks: Matching the Future for Sequence Generation We propose a simple technique for encouraging generative RNNs to plan ahead. We train a "backward" recurrent network to generate a given sequence in reverse order, and we encourage states of the forward model to predict cotemporal states of the backward model. The backward network is used only during training, and plays no role during sampling or inference. We hypothesize that our approach eases modeling of long-term dependencies by implicitly forcing the forward states to hold information about the longer-term future (as contained in the backward states). We show empirically that our approach achieves 9% relative improvement for a speech recognition task, and achieves significant improvement on a COCO caption generation task. 6 authors · Aug 22, 2017
- Generative Pre-Training for Speech with Autoregressive Predictive Coding Learning meaningful and general representations from unannotated speech that are applicable to a wide range of tasks remains challenging. In this paper we propose to use autoregressive predictive coding (APC), a recently proposed self-supervised objective, as a generative pre-training approach for learning meaningful, non-specific, and transferable speech representations. We pre-train APC on large-scale unlabeled data and conduct transfer learning experiments on three speech applications that require different information about speech characteristics to perform well: speech recognition, speech translation, and speaker identification. Extensive experiments show that APC not only outperforms surface features (e.g., log Mel spectrograms) and other popular representation learning methods on all three tasks, but is also effective at reducing downstream labeled data size and model parameters. We also investigate the use of Transformers for modeling APC and find it superior to RNNs. 2 authors · Oct 23, 2019
80 NeuralOS: Towards Simulating Operating Systems via Neural Generative Models We introduce NeuralOS, a neural framework that simulates graphical user interfaces (GUIs) of operating systems by directly predicting screen frames in response to user inputs such as mouse movements, clicks, and keyboard events. NeuralOS combines a recurrent neural network (RNN), which tracks computer state, with a diffusion-based neural renderer that generates screen images. The model is trained on a large-scale dataset of Ubuntu XFCE recordings, which include both randomly generated interactions and realistic interactions produced by AI agents. Experiments show that NeuralOS successfully renders realistic GUI sequences, accurately captures mouse interactions, and reliably predicts state transitions like application launches. Although modeling fine-grained keyboard interactions precisely remains challenging, NeuralOS offers a step toward creating fully adaptive, generative neural interfaces for future human-computer interaction systems. Yuntian Group · Jul 11, 2025 5
- Can the Transformer Be Used as a Drop-in Replacement for RNNs in Text-Generating GANs? In this paper we address the problem of fine-tuned text generation with a limited computational budget. For that, we use a well-performing text generative adversarial network (GAN) architecture - Diversity-Promoting GAN (DPGAN), and attempted a drop-in replacement of the LSTM layer with a self-attention-based Transformer layer in order to leverage their efficiency. The resulting Self-Attention DPGAN (SADPGAN) was evaluated for performance, quality and diversity of generated text and stability. Computational experiments suggested that a transformer architecture is unable to drop-in replace the LSTM layer, under-performing during the pre-training phase and undergoing a complete mode collapse during the GAN tuning phase. Our results suggest that the transformer architecture need to be adapted before it can be used as a replacement for RNNs in text-generating GANs. 2 authors · Aug 26, 2021
- Subformer: Exploring Weight Sharing for Parameter Efficiency in Generative Transformers Transformers have shown improved performance when compared to previous architectures for sequence processing such as RNNs. Despite their sizeable performance gains, as recently suggested, the model is computationally expensive to train and with a high parameter budget. In light of this, we explore parameter-sharing methods in Transformers with a specific focus on generative models. We perform an analysis of different parameter sharing/reduction methods and develop the Subformer. Our model combines sandwich-style parameter sharing, which overcomes naive cross-layer parameter sharing in generative models, and self-attentive embedding factorization (SAFE). Experiments on machine translation, abstractive summarization and language modeling show that the Subformer can outperform the Transformer even when using significantly fewer parameters. 3 authors · Jan 1, 2021