- Functorial String Diagrams for Reverse-Mode Automatic Differentiation We enhance the calculus of string diagrams for monoidal categories with hierarchical features in order to capture closed monoidal (and cartesian closed) structure. Using this new syntax we formulate an automatic differentiation algorithm for (applied) simply typed lambda calculus in the style of [Pearlmutter and Siskind 2008] and we prove for the first time its soundness. To give an efficient yet principled implementation of the AD algorithm we define a sound and complete representation of hierarchical string diagrams as a class of hierarchical hypergraphs we call hypernets. 4 authors · Jul 28, 2021
- Functorial Manifold Learning We adapt previous research on category theory and topological unsupervised learning to develop a functorial perspective on manifold learning, also known as nonlinear dimensionality reduction. We first characterize manifold learning algorithms as functors that map pseudometric spaces to optimization objectives and that factor through hierarchical clustering functors. We then use this characterization to prove refinement bounds on manifold learning loss functions and construct a hierarchy of manifold learning algorithms based on their equivariants. We express several popular manifold learning algorithms as functors at different levels of this hierarchy, including Metric Multidimensional Scaling, IsoMap, and UMAP. Next, we use interleaving distance to study the stability of a broad class of manifold learning algorithms. We present bounds on how closely the embeddings these algorithms produce from noisy data approximate the embeddings they would learn from noiseless data. Finally, we use our framework to derive a set of novel manifold learning algorithms, which we experimentally demonstrate are competitive with the state of the art. 1 authors · Nov 14, 2020
- Backprop as Functor: A compositional perspective on supervised learning A supervised learning algorithm searches over a set of functions A to B parametrised by a space P to find the best approximation to some ideal function fcolon A to B. It does this by taking examples (a,f(a)) in Atimes B, and updating the parameter according to some rule. We define a category where these update rules may be composed, and show that gradient descent---with respect to a fixed step size and an error function satisfying a certain property---defines a monoidal functor from a category of parametrised functions to this category of update rules. This provides a structural perspective on backpropagation, as well as a broad generalisation of neural networks. 3 authors · Nov 28, 2017
- Preservation of Loewy Diagrams Under Exact Functors We derive sufficient conditions for exact functors on locally finite abelian categories to preserve Loewy diagrams of objects. We apply our results to determine sufficient conditions for induction functors associated to simple current extensions of vertex algebras to preserve Loewy diagrams. 1 authors · May 1, 2023
- On integral extensions between the abelianization functor and its symmetric powers This paper aims to study Ext-groups between certain functors defined on the category of finitely generated free groups. Rational Ext-groups between the abelianization functor and its symmetric powers are known, and are almost always equal to zero. Recently, using homotopical methods, Arone constructed an explicit bounded complex whose homology corresponds to the integral Ext-groups between the abelianization functor and its symmetric powers. The homology of this complex is far from being trivial. Using this complex, we explicitly calculate some of these Ext-groups. More precisely, we compute Ext^1, Ext^2, Ext^{d-1} and Ext^{d-2} between the abelianization functor and its dth symmetric power. We further explain how Arone's complex can be obtained from an explicit projective resolution of the abelianization functor. We compare our results with the computation of Ext-groups between functors from finitely generated free abelian groups, obtained by Franjou and Pirashvili. In particular, we obtain that the composition with the abelianization functor induces an isomorphism for the Ext^1 considered in this paper. 2 authors · Sep 2, 2025