new

Get trending papers in your email inbox!

Subscribe

Daily Papers

byAK and the research community

Jan 5

FG-CLIP 2: A Bilingual Fine-grained Vision-Language Alignment Model

Fine-grained vision-language understanding requires precise alignment between visual content and linguistic descriptions, a capability that remains limited in current models, particularly in non-English settings. While models like CLIP perform well on global alignment, they often struggle to capture fine-grained details in object attributes, spatial relations, and linguistic expressions, with limited support for bilingual comprehension. To address these challenges, we introduce FG-CLIP 2, a bilingual vision-language model designed to advance fine-grained alignment for both English and Chinese. Our approach leverages rich fine-grained supervision, including region-text matching and long-caption modeling, alongside multiple discriminative objectives. We further introduce the Textual Intra-modal Contrastive (TIC) loss to better distinguish semantically similar captions. Trained on a carefully curated mixture of large-scale English and Chinese data, FG-CLIP 2 achieves powerful bilingual performance. To enable rigorous evaluation, we present a new benchmark for Chinese multimodal understanding, featuring long-caption retrieval and bounding box classification. Extensive experiments on 29 datasets across 8 tasks show that FG-CLIP 2 outperforms existing methods, achieving state-of-the-art results in both languages. We release the model, code, and benchmark to facilitate future research on bilingual fine-grained alignment.

  • 8 authors
·
Oct 12, 2025 2

Bilingual Corpus Mining and Multistage Fine-Tuning for Improving Machine Translation of Lecture Transcripts

Lecture transcript translation helps learners understand online courses, however, building a high-quality lecture machine translation system lacks publicly available parallel corpora. To address this, we examine a framework for parallel corpus mining, which provides a quick and effective way to mine a parallel corpus from publicly available lectures on Coursera. To create the parallel corpora, we propose a dynamic programming based sentence alignment algorithm which leverages the cosine similarity of machine-translated sentences. The sentence alignment F1 score reaches 96%, which is higher than using the BERTScore, LASER, or sentBERT methods. For both English--Japanese and English--Chinese lecture translations, we extracted parallel corpora of approximately 50,000 lines and created development and test sets through manual filtering for benchmarking translation performance. Through machine translation experiments, we show that the mined corpora enhance the quality of lecture transcript translation when used in conjunction with out-of-domain parallel corpora via multistage fine-tuning. Furthermore, this study also suggests guidelines for gathering and cleaning corpora, mining parallel sentences, cleaning noise in the mined data, and creating high-quality evaluation splits. For the sake of reproducibility, we have released the corpora as well as the code to create them. The dataset is available at https://github.com/shyyhs/CourseraParallelCorpusMining.

  • 5 authors
·
Nov 6, 2023

Bailong: Bilingual Transfer Learning based on QLoRA and Zip-tie Embedding

Large language models (LLMs) have demonstrated exceptional performance in various NLP applications. However, the majority of existing open-source LLMs are pre-trained primarily on English data and little part of other languages. This deficiency in multilingual training data results in suboptimal performance when applied to languages with fewer available resources. Furthermore, enhancing the performance of LLMs on low-resource languages by full-parameter fine-tuning with additional data requires substantial computational resources, posing computational barriers for research organizations and individual researchers. Consequently, several techniques such as parameter-efficient tuning and advanced embedding initialization have been proposed to address these challenges. In this work, we combine them to facilitate cross-lingual transfer on English-dominated open-source LLM. To effectively enhance the model's proficiency in Traditional Chinese, we conduct secondary pre-training on Llama 2 7B with Traditional Chinese data by leveraging QLoRA and our proposed zip-tie embedding initialization. The resulting model called Bailong, which stands for Bilingual trAnsfer learnIng based on qLOra and zip-tie embeddiNG. We present Bailong-instruct 7B, a fine-tuned version of Bailong 7B optimized for multi-turn dialogue scenarios. Recognizing the inadequacy of benchmark datasets in Traditional Chinese, we further introduce Bailong-bench to assess the alignment of models with human preferences and the capability to follow instructions in both Traditional Chinese and English tasks. In our evaluation, Bailong-instruct 7B exhibits competitive performance on Bailong-bench and other benchmark datasets when compared to other open-source models of similar or even larger parameter sizes. Bailong-instruct 7B and Bailong-bench are publicly available with the aim of empowering the community to build upon our efforts.

  • 2 authors
·
Mar 31, 2024

Ziya-VL: Bilingual Large Vision-Language Model via Multi-Task Instruction Tuning

Recent advancements enlarge the capabilities of large language models (LLMs) in zero-shot image-to-text generation and understanding by integrating multi-modal inputs. However, such success is typically limited to English scenarios due to the lack of large-scale and high-quality non-English multi-modal resources, making it extremely difficult to establish competitive counterparts in other languages. In this paper, we introduce the Ziya-VL series, a set of bilingual large-scale vision-language models (LVLMs) designed to incorporate visual semantics into LLM for multi-modal dialogue. Composed of Ziya-VL-Base and Ziya-VL-Chat, our models adopt the Querying Transformer from BLIP-2, further exploring the assistance of optimization schemes such as instruction tuning, multi-stage training and low-rank adaptation module for visual-language alignment. In addition, we stimulate the understanding ability of GPT-4 in multi-modal scenarios, translating our gathered English image-text datasets into Chinese and generating instruction-response through the in-context learning method. The experiment results demonstrate that compared to the existing LVLMs, Ziya-VL achieves competitive performance across a wide range of English-only tasks including zero-shot image-text retrieval, image captioning, and visual question answering. The evaluation leaderboard accessed by GPT-4 also indicates that our models possess satisfactory image-text understanding and generation capabilities in Chinese multi-modal scenario dialogues. Code, demo and models are available at ~https://huggingface.co/IDEA-CCNL/Ziya-BLIP2-14B-Visual-v1.

  • 8 authors
·
Oct 12, 2023

Rethinking Uncertainly Missing and Ambiguous Visual Modality in Multi-Modal Entity Alignment

As a crucial extension of entity alignment (EA), multi-modal entity alignment (MMEA) aims to identify identical entities across disparate knowledge graphs (KGs) by exploiting associated visual information. However, existing MMEA approaches primarily concentrate on the fusion paradigm of multi-modal entity features, while neglecting the challenges presented by the pervasive phenomenon of missing and intrinsic ambiguity of visual images. In this paper, we present a further analysis of visual modality incompleteness, benchmarking latest MMEA models on our proposed dataset MMEA-UMVM, where the types of alignment KGs covering bilingual and monolingual, with standard (non-iterative) and iterative training paradigms to evaluate the model performance. Our research indicates that, in the face of modality incompleteness, models succumb to overfitting the modality noise, and exhibit performance oscillations or declines at high rates of missing modality. This proves that the inclusion of additional multi-modal data can sometimes adversely affect EA. To address these challenges, we introduce UMAEA , a robust multi-modal entity alignment approach designed to tackle uncertainly missing and ambiguous visual modalities. It consistently achieves SOTA performance across all 97 benchmark splits, significantly surpassing existing baselines with limited parameters and time consumption, while effectively alleviating the identified limitations of other models. Our code and benchmark data are available at https://github.com/zjukg/UMAEA.

  • 9 authors
·
Jul 30, 2023

A Novel Paradigm Boosting Translation Capabilities of Large Language Models

This paper presents a study on strategies to enhance the translation capabilities of large language models (LLMs) in the context of machine translation (MT) tasks. The paper proposes a novel paradigm consisting of three stages: Secondary Pre-training using Extensive Monolingual Data, Continual Pre-training with Interlinear Text Format Documents, and Leveraging Source-Language Consistent Instruction for Supervised Fine-Tuning. Previous research on LLMs focused on various strategies for supervised fine-tuning (SFT), but their effectiveness has been limited. While traditional machine translation approaches rely on vast amounts of parallel bilingual data, our paradigm highlights the importance of using smaller sets of high-quality bilingual data. We argue that the focus should be on augmenting LLMs' cross-lingual alignment abilities during pre-training rather than solely relying on extensive bilingual data during SFT. Experimental results conducted using the Llama2 model, particularly on Chinese-Llama2 after monolingual augmentation, demonstrate the improved translation capabilities of LLMs. A significant contribution of our approach lies in Stage2: Continual Pre-training with Interlinear Text Format Documents, which requires less than 1B training data, making our method highly efficient. Additionally, in Stage3, we observed that setting instructions consistent with the source language benefits the supervised fine-tuning process. Experimental results demonstrate that our approach surpasses previous work and achieves superior performance compared to models such as NLLB-54B and GPT3.5-text-davinci-003, despite having a significantly smaller parameter count of only 7B or 13B. This achievement establishes our method as a pioneering strategy in the field of machine translation.

  • 6 authors
·
Mar 17, 2024

Alif: Advancing Urdu Large Language Models via Multilingual Synthetic Data Distillation

Developing a high-performing large language models (LLMs) for low-resource languages such as Urdu, present several challenges. These challenges include the scarcity of high-quality datasets, multilingual inconsistencies, and safety concerns. Existing multilingual LLMs often address these issues by translating large volumes of available data. However, such translations often lack quality and cultural nuance while also incurring significant costs for data curation and training. To address these issues, we propose Alif-1.0-8B-Instruct, a multilingual Urdu-English model, that tackles these challenges with a unique approach. We train the model on a high-quality, multilingual synthetic dataset (Urdu-Instruct), developed using a modified self-instruct technique. By using unique prompts and seed values for each task along with a global task pool, this dataset incorporates Urdu-native chain-of-thought based reasoning, bilingual translation, cultural relevance, and ethical safety alignments. This technique significantly enhances the comprehension of Alif-1.0-8B-Instruct model for Urdu-specific tasks. As a result, Alif-1.0-8B-Instruct, built upon the pretrained Llama-3.1-8B, demonstrates superior performance compared to Llama-3.1-8B-Instruct for Urdu specific-tasks. It also outperformed leading multilingual LLMs, including Mistral-7B-Instruct-v0.3, Qwen-2.5-7B-Instruct, and Cohere-Aya-Expanse-8B, all within a training budget of under $100. Our results demonstrate that high-performance and low-resource language LLMs can be developed efficiently and culturally aligned using our modified self-instruct approach. All datasets, models, and code are publicly available at: https://github.com/traversaal-ai/alif-urdu-llm.

  • 6 authors
·
Oct 10, 2025