new

Get trending papers in your email inbox!

Subscribe

Daily Papers

byAK and the research community

Jan 9

Evolutionary Perspectives on the Evaluation of LLM-Based AI Agents: A Comprehensive Survey

The advent of large language models (LLMs), such as GPT, Gemini, and DeepSeek, has significantly advanced natural language processing, giving rise to sophisticated chatbots capable of diverse language-related tasks. The transition from these traditional LLM chatbots to more advanced AI agents represents a pivotal evolutionary step. However, existing evaluation frameworks often blur the distinctions between LLM chatbots and AI agents, leading to confusion among researchers selecting appropriate benchmarks. To bridge this gap, this paper introduces a systematic analysis of current evaluation approaches, grounded in an evolutionary perspective. We provide a detailed analytical framework that clearly differentiates AI agents from LLM chatbots along five key aspects: complex environment, multi-source instructor, dynamic feedback, multi-modal perception, and advanced capability. Further, we categorize existing evaluation benchmarks based on external environments driving forces, and resulting advanced internal capabilities. For each category, we delineate relevant evaluation attributes, presented comprehensively in practical reference tables. Finally, we synthesize current trends and outline future evaluation methodologies through four critical lenses: environment, agent, evaluator, and metrics. Our findings offer actionable guidance for researchers, facilitating the informed selection and application of benchmarks in AI agent evaluation, thus fostering continued advancement in this rapidly evolving research domain.

  • 12 authors
·
Jun 6, 2025

Middo: Model-Informed Dynamic Data Optimization for Enhanced LLM Fine-Tuning via Closed-Loop Learning

Supervised Fine-Tuning (SFT) Large Language Models (LLM) fundamentally rely on high-quality training data. While data selection and data synthesis are two common strategies to improve data quality, existing approaches often face limitations in static dataset curation that fail to adapt to evolving model capabilities. In this paper, we introduce Middo, a self-evolving Model-informed dynamic data optimization framework that uses model-aware data selection and context-preserving data refinement. Unlike conventional one-off filtering/synthesis methods, our framework establishes a closed-loop optimization system: (1) A self-referential diagnostic module proactively identifies suboptimal samples through tri-axial model signals - loss patterns (complexity), embedding cluster dynamics (diversity), and self-alignment scores (quality); (2) An adaptive optimization engine then transforms suboptimal samples into pedagogically valuable training points while preserving semantic integrity; (3) This optimization process continuously evolves with model capability through dynamic learning principles. Experiments on multiple benchmarks demonstrate that our \method consistently enhances the quality of seed data and boosts LLM's performance with improving accuracy by 7.15% on average while maintaining the original dataset scale. This work establishes a new paradigm for sustainable LLM training through dynamic human-AI co-evolution of data and models. Our datasets, models, and code are coming soon.

  • 8 authors
·
Aug 29, 2025

PartnerMAS: An LLM Hierarchical Multi-Agent Framework for Business Partner Selection on High-Dimensional Features

High-dimensional decision-making tasks, such as business partner selection, involve evaluating large candidate pools with heterogeneous numerical, categorical, and textual features. While large language models (LLMs) offer strong in-context reasoning capabilities, single-agent or debate-style systems often struggle with scalability and consistency in such settings. We propose PartnerMAS, a hierarchical multi-agent framework that decomposes evaluation into three layers: a Planner Agent that designs strategies, Specialized Agents that perform role-specific assessments, and a Supervisor Agent that integrates their outputs. To support systematic evaluation, we also introduce a curated benchmark dataset of venture capital co-investments, featuring diverse firm attributes and ground-truth syndicates. Across 140 cases, PartnerMAS consistently outperforms single-agent and debate-based multi-agent baselines, achieving up to 10--15\% higher match rates. Analysis of agent reasoning shows that planners are most responsive to domain-informed prompts, specialists produce complementary feature coverage, and supervisors play an important role in aggregation. Our findings demonstrate that structured collaboration among LLM agents can generate more robust outcomes than scaling individual models, highlighting PartnerMAS as a promising framework for high-dimensional decision-making in data-rich domains.

  • 8 authors
·
Sep 28, 2025