Get trending papers in your email inbox once a day!
Get trending papers in your email inbox!
SubscribeCommunityKG-RAG: Leveraging Community Structures in Knowledge Graphs for Advanced Retrieval-Augmented Generation in Fact-Checking
Despite advancements in Large Language Models (LLMs) and Retrieval-Augmented Generation (RAG) systems, their effectiveness is often hindered by a lack of integration with entity relationships and community structures, limiting their ability to provide contextually rich and accurate information retrieval for fact-checking. We introduce CommunityKG-RAG (Community Knowledge Graph-Retrieval Augmented Generation), a novel zero-shot framework that integrates community structures within Knowledge Graphs (KGs) with RAG systems to enhance the fact-checking process. Capable of adapting to new domains and queries without additional training, CommunityKG-RAG utilizes the multi-hop nature of community structures within KGs to significantly improve the accuracy and relevance of information retrieval. Our experimental results demonstrate that CommunityKG-RAG outperforms traditional methods, representing a significant advancement in fact-checking by offering a robust, scalable, and efficient solution.
Enhancing Large Language Models with Reward-guided Tree Search for Knowledge Graph Question and Answering
Recently, large language models (LLMs) have demonstrated impressive performance in Knowledge Graph Question Answering (KGQA) tasks, which aim to find answers based on knowledge graphs (KGs) for natural language questions. Existing LLMs-based KGQA methods typically follow the Graph Retrieval-Augmented Generation (GraphRAG) paradigm, which first retrieves reasoning paths from the large KGs, and then generates the answers based on them. However, these methods emphasize the exploration of new optimal reasoning paths in KGs while ignoring the exploitation of historical reasoning paths, which may lead to sub-optimal reasoning paths. Additionally, the complex semantics contained in questions may lead to the retrieval of inaccurate reasoning paths. To address these issues, this paper proposes a novel and training-free framework for KGQA tasks called Reward-guided Tree Search on Graph (RTSoG). RTSoG decomposes an original question into a series of simpler and well-defined sub-questions to handle the complex semantics. Then, a Self-Critic Monte Carlo Tree Search (SC-MCTS) guided by a reward model is introduced to iteratively retrieve weighted reasoning paths as contextual knowledge. Finally, it stacks the weighted reasoning paths according to their weights to generate the final answers. Extensive experiments on four datasets demonstrate the effectiveness of RTSoG. Notably, it achieves 8.7\% and 7.0\% performance improvement over the state-of-the-art method on the GrailQA and the WebQSP respectively.
KG-RAG: Bridging the Gap Between Knowledge and Creativity
Ensuring factual accuracy while maintaining the creative capabilities of Large Language Model Agents (LMAs) poses significant challenges in the development of intelligent agent systems. LMAs face prevalent issues such as information hallucinations, catastrophic forgetting, and limitations in processing long contexts when dealing with knowledge-intensive tasks. This paper introduces a KG-RAG (Knowledge Graph-Retrieval Augmented Generation) pipeline, a novel framework designed to enhance the knowledge capabilities of LMAs by integrating structured Knowledge Graphs (KGs) with the functionalities of LLMs, thereby significantly reducing the reliance on the latent knowledge of LLMs. The KG-RAG pipeline constructs a KG from unstructured text and then performs information retrieval over the newly created graph to perform KGQA (Knowledge Graph Question Answering). The retrieval methodology leverages a novel algorithm called Chain of Explorations (CoE) which benefits from LLMs reasoning to explore nodes and relationships within the KG sequentially. Preliminary experiments on the ComplexWebQuestions dataset demonstrate notable improvements in the reduction of hallucinated content and suggest a promising path toward developing intelligent systems adept at handling knowledge-intensive tasks.
Interpretable Question Answering with Knowledge Graphs
This paper presents a question answering system that operates exclusively on a knowledge graph retrieval without relying on retrieval augmented generation (RAG) with large language models (LLMs). Instead, a small paraphraser model is used to paraphrase the entity relationship edges retrieved from querying the knowledge graph. The proposed pipeline is divided into two main stages. The first stage involves pre-processing a document to generate sets of question-answer (QA) pairs. The second stage converts these QAs into a knowledge graph from which graph-based retrieval is performed using embeddings and fuzzy techniques. The graph is queried, re-ranked, and paraphrased to generate a final answer. This work includes an evaluation using LLM-as-a-judge on the CRAG benchmark, which resulted in accuracies of 71.9% and 54.4% using LLAMA-3.2 and GPT-3.5-Turbo, respectively.
Knowledge Graph-extended Retrieval Augmented Generation for Question Answering
Large Language Models (LLMs) and Knowledge Graphs (KGs) offer a promising approach to robust and explainable Question Answering (QA). While LLMs excel at natural language understanding, they suffer from knowledge gaps and hallucinations. KGs provide structured knowledge but lack natural language interaction. Ideally, an AI system should be both robust to missing facts as well as easy to communicate with. This paper proposes such a system that integrates LLMs and KGs without requiring training, ensuring adaptability across different KGs with minimal human effort. The resulting approach can be classified as a specific form of a Retrieval Augmented Generation (RAG) with a KG, thus, it is dubbed Knowledge Graph-extended Retrieval Augmented Generation (KG-RAG). It includes a question decomposition module to enhance multi-hop information retrieval and answer explainability. Using In-Context Learning (ICL) and Chain-of-Thought (CoT) prompting, it generates explicit reasoning chains processed separately to improve truthfulness. Experiments on the MetaQA benchmark show increased accuracy for multi-hop questions, though with a slight trade-off in single-hop performance compared to LLM with KG baselines. These findings demonstrate KG-RAG's potential to improve transparency in QA by bridging unstructured language understanding with structured knowledge retrieval.
Knowledge Graph-based Retrieval-Augmented Generation for Schema Matching
Traditional similarity-based schema matching methods are incapable of resolving semantic ambiguities and conflicts in domain-specific complex mapping scenarios due to missing commonsense and domain-specific knowledge. The hallucination problem of large language models (LLMs) also makes it challenging for LLM-based schema matching to address the above issues. Therefore, we propose a Knowledge Graph-based Retrieval-Augmented Generation model for Schema Matching, referred to as the KG-RAG4SM. In particular, KG-RAG4SM introduces novel vector-based, graph traversal-based, and query-based graph retrievals, as well as a hybrid approach and ranking schemes that identify the most relevant subgraphs from external large knowledge graphs (KGs). We showcase that KG-based retrieval-augmented LLMs are capable of generating more accurate results for complex matching cases without any re-training. Our experimental results show that KG-RAG4SM outperforms the LLM-based state-of-the-art (SOTA) methods (e.g., Jellyfish-8B) by 35.89% and 30.50% in terms of precision and F1 score on the MIMIC dataset, respectively; KG-RAG4SM with GPT-4o-mini outperforms the pre-trained language model (PLM)-based SOTA methods (e.g., SMAT) by 69.20% and 21.97% in terms of precision and F1 score on the Synthea dataset, respectively. The results also demonstrate that our approach is more efficient in end-to-end schema matching, and scales to retrieve from large KGs. Our case studies on the dataset from the real-world schema matching scenario exhibit that the hallucination problem of LLMs for schema matching is well mitigated by our solution.
Knowledge Graph Enhanced Retrieval-Augmented Generation for Failure Mode and Effects Analysis
Failure mode and effects analysis (FMEA) is a critical tool for mitigating potential failures, particular during ramp-up phases of new products. However, its effectiveness is often limited by the missing reasoning capabilities of the FMEA tools, which are usually tabular structured. Meanwhile, large language models (LLMs) offer novel prospects for fine-tuning on custom datasets for reasoning within FMEA contexts. However, LLMs face challenges in tasks that require factual knowledge, a gap that retrieval-augmented generation (RAG) approaches aim to fill. RAG retrieves information from a non-parametric data store and uses a language model to generate responses. Building on this idea, we propose to advance the non-parametric data store with a knowledge graph (KG). By enhancing the RAG framework with a KG, our objective is to leverage analytical and semantic question-answering capabilities on FMEA data. This paper contributes by presenting a new ontology for FMEA observations, an algorithm for creating vector embeddings from the FMEA KG, and a KG enhanced RAG framework. Our approach is validated through a human study and we measure the performance of the context retrieval recall and precision.
DO-RAG: A Domain-Specific QA Framework Using Knowledge Graph-Enhanced Retrieval-Augmented Generation
Domain-specific QA systems require not just generative fluency but high factual accuracy grounded in structured expert knowledge. While recent Retrieval-Augmented Generation (RAG) frameworks improve context recall, they struggle with integrating heterogeneous data and maintaining reasoning consistency. To address these challenges, we propose DO-RAG, a scalable and customizable hybrid QA framework that integrates multi-level knowledge graph construction with semantic vector retrieval. Our system employs a novel agentic chain-of-thought architecture to extract structured relationships from unstructured, multimodal documents, constructing dynamic knowledge graphs that enhance retrieval precision. At query time, DO-RAG fuses graph and vector retrieval results to generate context-aware responses, followed by hallucination mitigation via grounded refinement. Experimental evaluations in the database and electrical domains show near-perfect recall and over 94% answer relevancy, with DO-RAG outperforming baseline frameworks by up to 33.38%. By combining traceability, adaptability, and performance efficiency, DO-RAG offers a reliable foundation for multi-domain, high-precision QA at scale.
MegaRAG: Multimodal Knowledge Graph-Based Retrieval Augmented Generation
Retrieval-augmented generation (RAG) enables large language models (LLMs) to dynamically access external information, which is powerful for answering questions over previously unseen documents. Nonetheless, they struggle with high-level conceptual understanding and holistic comprehension due to limited context windows, which constrain their ability to perform deep reasoning over long-form, domain-specific content such as full-length books. To solve this problem, knowledge graphs (KGs) have been leveraged to provide entity-centric structure and hierarchical summaries, offering more structured support for reasoning. However, existing KG-based RAG solutions remain restricted to text-only inputs and fail to leverage the complementary insights provided by other modalities such as vision. On the other hand, reasoning from visual documents requires textual, visual, and spatial cues into structured, hierarchical concepts. To address this issue, we introduce a multimodal knowledge graph-based RAG that enables cross-modal reasoning for better content understanding. Our method incorporates visual cues into the construction of knowledge graphs, the retrieval phase, and the answer generation process. Experimental results across both global and fine-grained question answering tasks show that our approach consistently outperforms existing RAG-based approaches on both textual and multimodal corpora.
KG-RAG: Enhancing GUI Agent Decision-Making via Knowledge Graph-Driven Retrieval-Augmented Generation
Despite recent progress, Graphic User Interface (GUI) agents powered by Large Language Models (LLMs) struggle with complex mobile tasks due to limited app-specific knowledge. While UI Transition Graphs (UTGs) offer structured navigation representations, they are underutilized due to poor extraction and inefficient integration. We introduce KG-RAG, a Knowledge Graph-driven Retrieval-Augmented Generation framework that transforms fragmented UTGs into structured vector databases for efficient real-time retrieval. By leveraging an intent-guided LLM search method, KG-RAG generates actionable navigation paths, enhancing agent decision-making. Experiments across diverse mobile apps show that KG-RAG outperforms existing methods, achieving a 75.8% success rate (8.9% improvement over AutoDroid), 84.6% decision accuracy (8.1% improvement), and reducing average task steps from 4.5 to 4.1. Additionally, we present KG-Android-Bench and KG-Harmony-Bench, two benchmarks tailored to the Chinese mobile ecosystem for future research. Finally, KG-RAG transfers to web/desktop (+40% SR on Weibo-web; +20% on QQ Music-desktop), and a UTG cost ablation shows accuracy saturates at ~4h per complex app, enabling practical deployment trade-offs.
GraphSearch: An Agentic Deep Searching Workflow for Graph Retrieval-Augmented Generation
Graph Retrieval-Augmented Generation (GraphRAG) enhances factual reasoning in LLMs by structurally modeling knowledge through graph-based representations. However, existing GraphRAG approaches face two core limitations: shallow retrieval that fails to surface all critical evidence, and inefficient utilization of pre-constructed structural graph data, which hinders effective reasoning from complex queries. To address these challenges, we propose GraphSearch, a novel agentic deep searching workflow with dual-channel retrieval for GraphRAG. GraphSearch organizes the retrieval process into a modular framework comprising six modules, enabling multi-turn interactions and iterative reasoning. Furthermore, GraphSearch adopts a dual-channel retrieval strategy that issues semantic queries over chunk-based text data and relational queries over structural graph data, enabling comprehensive utilization of both modalities and their complementary strengths. Experimental results across six multi-hop RAG benchmarks demonstrate that GraphSearch consistently improves answer accuracy and generation quality over the traditional strategy, confirming GraphSearch as a promising direction for advancing graph retrieval-augmented generation.
Retrieval-Augmented Generation with Knowledge Graphs for Customer Service Question Answering
In customer service technical support, swiftly and accurately retrieving relevant past issues is critical for efficiently resolving customer inquiries. The conventional retrieval methods in retrieval-augmented generation (RAG) for large language models (LLMs) treat a large corpus of past issue tracking tickets as plain text, ignoring the crucial intra-issue structure and inter-issue relations, which limits performance. We introduce a novel customer service question-answering method that amalgamates RAG with a knowledge graph (KG). Our method constructs a KG from historical issues for use in retrieval, retaining the intra-issue structure and inter-issue relations. During the question-answering phase, our method parses consumer queries and retrieves related sub-graphs from the KG to generate answers. This integration of a KG not only improves retrieval accuracy by preserving customer service structure information but also enhances answering quality by mitigating the effects of text segmentation. Empirical assessments on our benchmark datasets, utilizing key retrieval (MRR, Recall@K, NDCG@K) and text generation (BLEU, ROUGE, METEOR) metrics, reveal that our method outperforms the baseline by 77.6% in MRR and by 0.32 in BLEU. Our method has been deployed within LinkedIn's customer service team for approximately six months and has reduced the median per-issue resolution time by 28.6%.
DSRAG: A Domain-Specific Retrieval Framework Based on Document-derived Multimodal Knowledge Graph
Current general-purpose large language models (LLMs) commonly exhibit knowledge hallucination and insufficient domain-specific adaptability in domain-specific tasks, limiting their effectiveness in specialized question answering scenarios. Retrieval-augmented generation (RAG) effectively tackles these challenges by integrating external knowledge to enhance accuracy and relevance. However, traditional RAG still faces limitations in domain knowledge accuracy and context modeling.To enhance domain-specific question answering performance, this work focuses on a graph-based RAG framework, emphasizing the critical role of knowledge graph quality during the generation process. We propose DSRAG (Domain-Specific RAG), a multimodal knowledge graph-driven retrieval-augmented generation framework designed for domain-specific applications. Our approach leverages domain-specific documents as the primary knowledge source, integrating heterogeneous information such as text, images, and tables to construct a multimodal knowledge graph covering both conceptual and instance layers. Building on this foundation, we introduce semantic pruning and structured subgraph retrieval mechanisms, combining knowledge graph context and vector retrieval results to guide the language model towards producing more reliable responses. Evaluations using the Langfuse multidimensional scoring mechanism show that our method excels in domain-specific question answering, validating the efficacy of integrating multimodal knowledge graphs with retrieval-augmented generation.
Biomedical knowledge graph-optimized prompt generation for large language models
Large Language Models (LLMs) are being adopted at an unprecedented rate, yet still face challenges in knowledge-intensive domains like biomedicine. Solutions such as pre-training and domain-specific fine-tuning add substantial computational overhead, requiring further domain expertise. Here, we introduce a token-optimized and robust Knowledge Graph-based Retrieval Augmented Generation (KG-RAG) framework by leveraging a massive biomedical KG (SPOKE) with LLMs such as Llama-2-13b, GPT-3.5-Turbo and GPT-4, to generate meaningful biomedical text rooted in established knowledge. Compared to the existing RAG technique for Knowledge Graphs, the proposed method utilizes minimal graph schema for context extraction and uses embedding methods for context pruning. This optimization in context extraction results in more than 50% reduction in token consumption without compromising the accuracy, making a cost-effective and robust RAG implementation on proprietary LLMs. KG-RAG consistently enhanced the performance of LLMs across diverse biomedical prompts by generating responses rooted in established knowledge, accompanied by accurate provenance and statistical evidence (if available) to substantiate the claims. Further benchmarking on human curated datasets, such as biomedical true/false and multiple-choice questions (MCQ), showed a remarkable 71% boost in the performance of the Llama-2 model on the challenging MCQ dataset, demonstrating the framework's capacity to empower open-source models with fewer parameters for domain specific questions. Furthermore, KG-RAG enhanced the performance of proprietary GPT models, such as GPT-3.5 and GPT-4. In summary, the proposed framework combines explicit and implicit knowledge of KG and LLM in a token optimized fashion, thus enhancing the adaptability of general-purpose LLMs to tackle domain-specific questions in a cost-effective fashion.
What Breaks Knowledge Graph based RAG? Empirical Insights into Reasoning under Incomplete Knowledge
Knowledge Graph-based Retrieval-Augmented Generation (KG-RAG) is an increasingly explored approach for combining the reasoning capabilities of large language models with the structured evidence of knowledge graphs. However, current evaluation practices fall short: existing benchmarks often include questions that can be directly answered using existing triples in KG, making it unclear whether models perform reasoning or simply retrieve answers directly. Moreover, inconsistent evaluation metrics and lenient answer matching criteria further obscure meaningful comparisons. In this work, we introduce a general method for constructing benchmarks, together with an evaluation protocol, to systematically assess KG-RAG methods under knowledge incompleteness. Our empirical results show that current KG-RAG methods have limited reasoning ability under missing knowledge, often rely on internal memorization, and exhibit varying degrees of generalization depending on their design.
Context Canvas: Enhancing Text-to-Image Diffusion Models with Knowledge Graph-Based RAG
We introduce a novel approach to enhance the capabilities of text-to-image models by incorporating a graph-based RAG. Our system dynamically retrieves detailed character information and relational data from the knowledge graph, enabling the generation of visually accurate and contextually rich images. This capability significantly improves upon the limitations of existing T2I models, which often struggle with the accurate depiction of complex or culturally specific subjects due to dataset constraints. Furthermore, we propose a novel self-correcting mechanism for text-to-image models to ensure consistency and fidelity in visual outputs, leveraging the rich context from the graph to guide corrections. Our qualitative and quantitative experiments demonstrate that Context Canvas significantly enhances the capabilities of popular models such as Flux, Stable Diffusion, and DALL-E, and improves the functionality of ControlNet for fine-grained image editing tasks. To our knowledge, Context Canvas represents the first application of graph-based RAG in enhancing T2I models, representing a significant advancement for producing high-fidelity, context-aware multi-faceted images.
Human Cognition Inspired RAG with Knowledge Graph for Complex Problem Solving
Large language models (LLMs) have demonstrated transformative potential across various domains, yet they face significant challenges in knowledge integration and complex problem reasoning, often leading to hallucinations and unreliable outputs. Retrieval-Augmented Generation (RAG) has emerged as a promising solution to enhance LLMs accuracy by incorporating external knowledge. However, traditional RAG systems struggle with processing complex relational information and multi-step reasoning, limiting their effectiveness in advanced problem-solving tasks. To address these limitations, we propose CogGRAG, a cognition inspired graph-based RAG framework, designed to improve LLMs performance in Knowledge Graph Question Answering (KGQA). Inspired by the human cognitive process of decomposing complex problems and performing self-verification, our framework introduces a three-stage methodology: decomposition, retrieval, and reasoning with self-verification. By integrating these components, CogGRAG enhances the accuracy of LLMs in complex problem solving. We conduct systematic experiments with three LLM backbones on four benchmark datasets, where CogGRAG outperforms the baselines.
SciToolAgent: A Knowledge Graph-Driven Scientific Agent for Multi-Tool Integration
Scientific research increasingly relies on specialized computational tools, yet effectively utilizing these tools demands substantial domain expertise. While Large Language Models (LLMs) show promise in tool automation, they struggle to seamlessly integrate and orchestrate multiple tools for complex scientific workflows. Here, we present SciToolAgent, an LLM-powered agent that automates hundreds of scientific tools across biology, chemistry, and materials science. At its core, SciToolAgent leverages a scientific tool knowledge graph that enables intelligent tool selection and execution through graph-based retrieval-augmented generation. The agent also incorporates a comprehensive safety-checking module to ensure responsible and ethical tool usage. Extensive evaluations on a curated benchmark demonstrate that SciToolAgent significantly outperforms existing approaches. Case studies in protein engineering, chemical reactivity prediction, chemical synthesis, and metal-organic framework screening further demonstrate SciToolAgent's capability to automate complex scientific workflows, making advanced research tools accessible to both experts and non-experts.
Deliberation on Priors: Trustworthy Reasoning of Large Language Models on Knowledge Graphs
Knowledge graph-based retrieval-augmented generation seeks to mitigate hallucinations in Large Language Models (LLMs) caused by insufficient or outdated knowledge. However, existing methods often fail to fully exploit the prior knowledge embedded in knowledge graphs (KGs), particularly their structural information and explicit or implicit constraints. The former can enhance the faithfulness of LLMs' reasoning, while the latter can improve the reliability of response generation. Motivated by these, we propose a trustworthy reasoning framework, termed Deliberation over Priors (DP), which sufficiently utilizes the priors contained in KGs. Specifically, DP adopts a progressive knowledge distillation strategy that integrates structural priors into LLMs through a combination of supervised fine-tuning and Kahneman-Tversky optimization, thereby improving the faithfulness of relation path generation. Furthermore, our framework employs a reasoning-introspection strategy, which guides LLMs to perform refined reasoning verification based on extracted constraint priors, ensuring the reliability of response generation. Extensive experiments on three benchmark datasets demonstrate that DP achieves new state-of-the-art performance, especially a Hit@1 improvement of 13% on the ComplexWebQuestions dataset, and generates highly trustworthy responses. We also conduct various analyses to verify its flexibility and practicality. The code is available at https://github.com/reml-group/Deliberation-on-Priors.
Talking like Piping and Instrumentation Diagrams (P&IDs)
We propose a methodology that allows communication with Piping and Instrumentation Diagrams (P&IDs) using natural language. In particular, we represent P&IDs through the DEXPI data model as labeled property graphs and integrate them with Large Language Models (LLMs). The approach consists of three main parts: 1) P&IDs are cast into a graph representation from the DEXPI format using our pyDEXPI Python package. 2) A tool for generating P&ID knowledge graphs from pyDEXPI. 3) Integration of the P&ID knowledge graph to LLMs using graph-based retrieval augmented generation (graph-RAG). This approach allows users to communicate with P&IDs using natural language. It extends LLM's ability to retrieve contextual data from P&IDs and mitigate hallucinations. Leveraging the LLM's large corpus, the model is also able to interpret process information in PIDs, which could help engineers in their daily tasks. In the future, this work will also open up opportunities in the context of other generative Artificial Intelligence (genAI) solutions on P&IDs, and AI-assisted HAZOP studies.
A Survey of Graph Retrieval-Augmented Generation for Customized Large Language Models
Large language models (LLMs) have demonstrated remarkable capabilities in a wide range of tasks, yet their application to specialized domains remains challenging due to the need for deep expertise. Retrieval-augmented generation (RAG) has emerged as a promising solution to customize LLMs for professional fields by seamlessly integrating external knowledge bases, enabling real-time access to domain-specific expertise during inference. Despite its potential, traditional RAG systems, based on flat text retrieval, face three critical challenges: (i) complex query understanding in professional contexts, (ii) difficulties in knowledge integration across distributed sources, and (iii) system efficiency bottlenecks at scale. This survey presents a systematic analysis of Graph-based Retrieval-Augmented Generation (GraphRAG), a new paradigm that revolutionizes domain-specific LLM applications. GraphRAG addresses traditional RAG limitations through three key innovations: (i) graph-structured knowledge representation that explicitly captures entity relationships and domain hierarchies, (ii) efficient graph-based retrieval techniques that enable context-preserving knowledge retrieval with multihop reasoning ability, and (iii) structure-aware knowledge integration algorithms that leverage retrieved knowledge for accurate and logical coherent generation of LLMs. In this survey, we systematically analyze the technical foundations of GraphRAG and examine current implementations across various professional domains, identifying key technical challenges and promising research directions. All the related resources of GraphRAG, including research papers, open-source data, and projects, are collected for the community in blue{https://github.com/DEEP-PolyU/Awesome-GraphRAG}.
When to use Graphs in RAG: A Comprehensive Analysis for Graph Retrieval-Augmented Generation
Graph retrieval-augmented generation (GraphRAG) has emerged as a powerful paradigm for enhancing large language models (LLMs) with external knowledge. It leverages graphs to model the hierarchical structure between specific concepts, enabling more coherent and effective knowledge retrieval for accurate reasoning.Despite its conceptual promise, recent studies report that GraphRAG frequently underperforms vanilla RAG on many real-world tasks. This raises a critical question: Is GraphRAG really effective, and in which scenarios do graph structures provide measurable benefits for RAG systems? To address this, we propose GraphRAG-Bench, a comprehensive benchmark designed to evaluate GraphRAG models onboth hierarchical knowledge retrieval and deep contextual reasoning. GraphRAG-Bench features a comprehensive dataset with tasks of increasing difficulty, coveringfact retrieval, complex reasoning, contextual summarization, and creative generation, and a systematic evaluation across the entire pipeline, from graph constructionand knowledge retrieval to final generation. Leveraging this novel benchmark, we systematically investigate the conditions when GraphRAG surpasses traditional RAG and the underlying reasons for its success, offering guidelines for its practical application. All related resources and analyses are collected for the community at https://github.com/GraphRAG-Bench/GraphRAG-Benchmark.
MedRAG: Enhancing Retrieval-augmented Generation with Knowledge Graph-Elicited Reasoning for Healthcare Copilot
Retrieval-augmented generation (RAG) is a well-suited technique for retrieving privacy-sensitive Electronic Health Records (EHR). It can serve as a key module of the healthcare copilot, helping reduce misdiagnosis for healthcare practitioners and patients. However, the diagnostic accuracy and specificity of existing heuristic-based RAG models used in the medical domain are inadequate, particularly for diseases with similar manifestations. This paper proposes MedRAG, a RAG model enhanced by knowledge graph (KG)-elicited reasoning for the medical domain that retrieves diagnosis and treatment recommendations based on manifestations. MedRAG systematically constructs a comprehensive four-tier hierarchical diagnostic KG encompassing critical diagnostic differences of various diseases. These differences are dynamically integrated with similar EHRs retrieved from an EHR database, and reasoned within a large language model. This process enables more accurate and specific decision support, while also proactively providing follow-up questions to enhance personalized medical decision-making. MedRAG is evaluated on both a public dataset DDXPlus and a private chronic pain diagnostic dataset (CPDD) collected from Tan Tock Seng Hospital, and its performance is compared against various existing RAG methods. Experimental results show that, leveraging the information integration and relational abilities of the KG, our MedRAG provides more specific diagnostic insights and outperforms state-of-the-art models in reducing misdiagnosis rates. Our code will be available at https://github.com/SNOWTEAM2023/MedRAG
LeanRAG: Knowledge-Graph-Based Generation with Semantic Aggregation and Hierarchical Retrieval
Retrieval-Augmented Generation (RAG) plays a crucial role in grounding Large Language Models by leveraging external knowledge, whereas the effectiveness is often compromised by the retrieval of contextually flawed or incomplete information. To address this, knowledge graph-based RAG methods have evolved towards hierarchical structures, organizing knowledge into multi-level summaries. However, these approaches still suffer from two critical, unaddressed challenges: high-level conceptual summaries exist as disconnected ``semantic islands'', lacking the explicit relations needed for cross-community reasoning; and the retrieval process itself remains structurally unaware, often degenerating into an inefficient flat search that fails to exploit the graph's rich topology. To overcome these limitations, we introduce LeanRAG, a framework that features a deeply collaborative design combining knowledge aggregation and retrieval strategies. LeanRAG first employs a novel semantic aggregation algorithm that forms entity clusters and constructs new explicit relations among aggregation-level summaries, creating a fully navigable semantic network. Then, a bottom-up, structure-guided retrieval strategy anchors queries to the most relevant fine-grained entities and then systematically traverses the graph's semantic pathways to gather concise yet contextually comprehensive evidence sets. The LeanRAG can mitigate the substantial overhead associated with path retrieval on graphs and minimizes redundant information retrieval. Extensive experiments on four challenging QA benchmarks with different domains demonstrate that LeanRAG significantly outperforming existing methods in response quality while reducing 46\% retrieval redundancy. Code is available at: https://github.com/RaZzzyz/LeanRAG
LinearRAG: Linear Graph Retrieval Augmented Generation on Large-scale Corpora
Retrieval-Augmented Generation (RAG) is widely used to mitigate hallucinations of Large Language Models (LLMs) by leveraging external knowledge. While effective for simple queries, traditional RAG systems struggle with large-scale, unstructured corpora where information is fragmented. Recent advances incorporate knowledge graphs to capture relational structures, enabling more comprehensive retrieval for complex, multi-hop reasoning tasks. However, existing graph-based RAG (GraphRAG) methods rely on unstable and costly relation extraction for graph construction, often producing noisy graphs with incorrect or inconsistent relations that degrade retrieval quality. In this paper, we revisit the pipeline of existing GraphRAG systems and propose LinearRAG (Linear Graph-based Retrieval-Augmented Generation), an efficient framework that enables reliable graph construction and precise passage retrieval. Specifically, LinearRAG constructs a relation-free hierarchical graph, termed Tri-Graph, using only lightweight entity extraction and semantic linking, avoiding unstable relation modeling. This new paradigm of graph construction scales linearly with corpus size and incurs no extra token consumption, providing an economical and reliable indexing of the original passages. For retrieval, LinearRAG adopts a two-stage strategy: (i) relevant entity activation via local semantic bridging, followed by (ii) passage retrieval through global importance aggregation. Extensive experiments on four datasets demonstrate that LinearRAG significantly outperforms baseline models.
Graph Retrieval-Augmented Generation: A Survey
Recently, Retrieval-Augmented Generation (RAG) has achieved remarkable success in addressing the challenges of Large Language Models (LLMs) without necessitating retraining. By referencing an external knowledge base, RAG refines LLM outputs, effectively mitigating issues such as ``hallucination'', lack of domain-specific knowledge, and outdated information. However, the complex structure of relationships among different entities in databases presents challenges for RAG systems. In response, GraphRAG leverages structural information across entities to enable more precise and comprehensive retrieval, capturing relational knowledge and facilitating more accurate, context-aware responses. Given the novelty and potential of GraphRAG, a systematic review of current technologies is imperative. This paper provides the first comprehensive overview of GraphRAG methodologies. We formalize the GraphRAG workflow, encompassing Graph-Based Indexing, Graph-Guided Retrieval, and Graph-Enhanced Generation. We then outline the core technologies and training methods at each stage. Additionally, we examine downstream tasks, application domains, evaluation methodologies, and industrial use cases of GraphRAG. Finally, we explore future research directions to inspire further inquiries and advance progress in the field.
Query-Centric Graph Retrieval Augmented Generation
Graph-based retrieval-augmented generation (RAG) enriches large language models (LLMs) with external knowledge for long-context understanding and multi-hop reasoning, but existing methods face a granularity dilemma: fine-grained entity-level graphs incur high token costs and lose context, while coarse document-level graphs fail to capture nuanced relations. We introduce QCG-RAG, a query-centric graph RAG framework that enables query-granular indexing and multi-hop chunk retrieval. Our query-centric approach leverages Doc2Query and Doc2Query{-}{-} to construct query-centric graphs with controllable granularity, improving graph quality and interpretability. A tailored multi-hop retrieval mechanism then selects relevant chunks via the generated queries. Experiments on LiHuaWorld and MultiHop-RAG show that QCG-RAG consistently outperforms prior chunk-based and graph-based RAG methods in question answering accuracy, establishing a new paradigm for multi-hop reasoning.
G-Retriever: Retrieval-Augmented Generation for Textual Graph Understanding and Question Answering
Given a graph with textual attributes, we enable users to `chat with their graph': that is, to ask questions about the graph using a conversational interface. In response to a user's questions, our method provides textual replies and highlights the relevant parts of the graph. While existing works integrate large language models (LLMs) and graph neural networks (GNNs) in various ways, they mostly focus on either conventional graph tasks (such as node, edge, and graph classification), or on answering simple graph queries on small or synthetic graphs. In contrast, we develop a flexible question-answering framework targeting real-world textual graphs, applicable to multiple applications including scene graph understanding, common sense reasoning, and knowledge graph reasoning. Toward this goal, we first develop a Graph Question Answering (GraphQA) benchmark with data collected from different tasks. Then, we propose our G-Retriever method, introducing the first retrieval-augmented generation (RAG) approach for general textual graphs, which can be fine-tuned to enhance graph understanding via soft prompting. To resist hallucination and to allow for textual graphs that greatly exceed the LLM's context window size, G-Retriever performs RAG over a graph by formulating this task as a Prize-Collecting Steiner Tree optimization problem. Empirical evaluations show that our method outperforms baselines on textual graph tasks from multiple domains, scales well with larger graph sizes, and mitigates hallucination.~Our codes and datasets are available at: \url{https://github.com/XiaoxinHe/G-Retriever}
LEGO-GraphRAG: Modularizing Graph-based Retrieval-Augmented Generation for Design Space Exploration
GraphRAG addresses significant challenges in Retrieval-Augmented Generation (RAG) by leveraging graphs with embedded knowledge to enhance the reasoning capabilities of Large Language Models (LLMs). Despite its promising potential, the GraphRAG community currently lacks a unified framework for fine-grained decomposition of the graph-based knowledge retrieval process. Furthermore, there is no systematic categorization or evaluation of existing solutions within the retrieval process. In this paper, we present LEGO-GraphRAG, a modular framework that decomposes the retrieval process of GraphRAG into three interconnected modules: subgraph-extraction, path-filtering, and path-refinement. We systematically summarize and classify the algorithms and neural network (NN) models relevant to each module, providing a clearer understanding of the design space for GraphRAG instances. Additionally, we identify key design factors, such as Graph Coupling and Computational Cost, that influence the effectiveness of GraphRAG implementations. Through extensive empirical studies, we construct high-quality GraphRAG instances using a representative selection of solutions and analyze their impact on retrieval and reasoning performance. Our findings offer critical insights into optimizing GraphRAG instance design, ultimately contributing to the advancement of more accurate and contextually relevant LLM applications.
TRACE the Evidence: Constructing Knowledge-Grounded Reasoning Chains for Retrieval-Augmented Generation
Retrieval-augmented generation (RAG) offers an effective approach for addressing question answering (QA) tasks. However, the imperfections of the retrievers in RAG models often result in the retrieval of irrelevant information, which could introduce noises and degrade the performance, especially when handling multi-hop questions that require multiple steps of reasoning. To enhance the multi-hop reasoning ability of RAG models, we propose TRACE. TRACE constructs knowledge-grounded reasoning chains, which are a series of logically connected knowledge triples, to identify and integrate supporting evidence from the retrieved documents for answering questions. Specifically, TRACE employs a KG Generator to create a knowledge graph (KG) from the retrieved documents, and then uses an Autoregressive Reasoning Chain Constructor to build reasoning chains. Experimental results on three multi-hop QA datasets show that TRACE achieves an average performance improvement of up to 14.03% compared to using all the retrieved documents. Moreover, the results indicate that using reasoning chains as context, rather than the entire documents, is often sufficient to correctly answer questions.
Towards Cross-Cultural Machine Translation with Retrieval-Augmented Generation from Multilingual Knowledge Graphs
Translating text that contains entity names is a challenging task, as cultural-related references can vary significantly across languages. These variations may also be caused by transcreation, an adaptation process that entails more than transliteration and word-for-word translation. In this paper, we address the problem of cross-cultural translation on two fronts: (i) we introduce XC-Translate, the first large-scale, manually-created benchmark for machine translation that focuses on text that contains potentially culturally-nuanced entity names, and (ii) we propose KG-MT, a novel end-to-end method to integrate information from a multilingual knowledge graph into a neural machine translation model by leveraging a dense retrieval mechanism. Our experiments and analyses show that current machine translation systems and large language models still struggle to translate texts containing entity names, whereas KG-MT outperforms state-of-the-art approaches by a large margin, obtaining a 129% and 62% relative improvement compared to NLLB-200 and GPT-4, respectively.
Medical Graph RAG: Towards Safe Medical Large Language Model via Graph Retrieval-Augmented Generation
We introduce a novel graph-based Retrieval-Augmented Generation (RAG) framework specifically designed for the medical domain, called MedGraphRAG, aimed at enhancing Large Language Model (LLM) capabilities and generating evidence-based results, thereby improving safety and reliability when handling private medical data. Our comprehensive pipeline begins with a hybrid static-semantic approach to document chunking, significantly improving context capture over traditional methods. Extracted entities are used to create a three-tier hierarchical graph structure, linking entities to foundational medical knowledge sourced from medical papers and dictionaries. These entities are then interconnected to form meta-graphs, which are merged based on semantic similarities to develop a comprehensive global graph. This structure supports precise information retrieval and response generation. The retrieval process employs a U-retrieve method to balance global awareness and indexing efficiency of the LLM. Our approach is validated through a comprehensive ablation study comparing various methods for document chunking, graph construction, and information retrieval. The results not only demonstrate that our hierarchical graph construction method consistently outperforms state-of-the-art models on multiple medical Q\&A benchmarks, but also confirms that the responses generated include source documentation, significantly enhancing the reliability of medical LLMs in practical applications. Code will be at: https://github.com/MedicineToken/Medical-Graph-RAG/tree/main
Respecting Temporal-Causal Consistency: Entity-Event Knowledge Graphs for Retrieval-Augmented Generation
Retrieval-augmented generation (RAG) based on large language models often falters on narrative documents with inherent temporal structures. Standard unstructured RAG methods rely solely on embedding-similarity matching and lack any general mechanism to encode or exploit chronological information, while knowledge graph RAG (KG-RAG) frameworks collapse every mention of an entity into a single node, erasing the evolving context that drives many queries. To formalize this challenge and draw the community's attention, we construct ChronoQA, a robust and discriminative QA benchmark that measures temporal, causal, and character consistency understanding in narrative documents (e.g., novels) under the RAG setting. We then introduce Entity-Event RAG (E^2RAG), a dual-graph framework that keeps separate entity and event subgraphs linked by a bipartite mapping, thereby preserving the temporal and causal facets needed for fine-grained reasoning. Across ChronoQA, our approach outperforms state-of-the-art unstructured and KG-based RAG baselines, with notable gains on causal and character consistency queries. E^2RAG therefore offers a practical path to more context-aware retrieval for tasks that require precise answers grounded in chronological information.
Pseudo-Knowledge Graph: Meta-Path Guided Retrieval and In-Graph Text for RAG-Equipped LLM
The advent of Large Language Models (LLMs) has revolutionized natural language processing. However, these models face challenges in retrieving precise information from vast datasets. Retrieval-Augmented Generation (RAG) was developed to combining LLMs with external information retrieval systems to enhance the accuracy and context of responses. Despite improvements, RAG still struggles with comprehensive retrieval in high-volume, low-information-density databases and lacks relational awareness, leading to fragmented answers. To address this, this paper introduces the Pseudo-Knowledge Graph (PKG) framework, designed to overcome these limitations by integrating Meta-path Retrieval, In-graph Text and Vector Retrieval into LLMs. By preserving natural language text and leveraging various retrieval techniques, the PKG offers a richer knowledge representation and improves accuracy in information retrieval. Extensive evaluations using Open Compass and MultiHop-RAG benchmarks demonstrate the framework's effectiveness in managing large volumes of data and complex relationships.
FastRAG: Retrieval Augmented Generation for Semi-structured Data
Efficiently processing and interpreting network data is critical for the operation of increasingly complex networks. Recent advances in Large Language Models (LLM) and Retrieval-Augmented Generation (RAG) techniques have improved data processing in network management. However, existing RAG methods like VectorRAG and GraphRAG struggle with the complexity and implicit nature of semi-structured technical data, leading to inefficiencies in time, cost, and retrieval. This paper introduces FastRAG, a novel RAG approach designed for semi-structured data. FastRAG employs schema learning and script learning to extract and structure data without needing to submit entire data sources to an LLM. It integrates text search with knowledge graph (KG) querying to improve accuracy in retrieving context-rich information. Evaluation results demonstrate that FastRAG provides accurate question answering, while improving up to 90% in time and 85% in cost compared to GraphRAG.
Youtu-GraphRAG: Vertically Unified Agents for Graph Retrieval-Augmented Complex Reasoning
Graph retrieval-augmented generation (GraphRAG) has effectively enhanced large language models in complex reasoning by organizing fragmented knowledge into explicitly structured graphs. Prior efforts have been made to improve either graph construction or graph retrieval in isolation, yielding suboptimal performance, especially when domain shifts occur. In this paper, we propose a vertically unified agentic paradigm, Youtu-GraphRAG, to jointly connect the entire framework as an intricate integration. Specifically, (i) a seed graph schema is introduced to bound the automatic extraction agent with targeted entity types, relations and attribute types, also continuously expanded for scalability over unseen domains; (ii) To obtain higher-level knowledge upon the schema, we develop novel dually-perceived community detection, fusing structural topology with subgraph semantics for comprehensive knowledge organization. This naturally yields a hierarchical knowledge tree that supports both top-down filtering and bottom-up reasoning with community summaries; (iii) An agentic retriever is designed to interpret the same graph schema to transform complex queries into tractable and parallel sub-queries. It iteratively performs reflection for more advanced reasoning; (iv) To alleviate the knowledge leaking problem in pre-trained LLM, we propose a tailored anonymous dataset and a novel 'Anonymity Reversion' task that deeply measures the real performance of the GraphRAG frameworks. Extensive experiments across six challenging benchmarks demonstrate the robustness of Youtu-GraphRAG, remarkably moving the Pareto frontier with up to 90.71% saving of token costs and 16.62% higher accuracy over state-of-the-art baselines. The results indicate our adaptability, allowing seamless domain transfer with minimal intervention on schema.
RARE: Retrieval-Aware Robustness Evaluation for Retrieval-Augmented Generation Systems
Retrieval-Augmented Generation (RAG) enhances recency and factuality in answers. However, existing evaluations rarely test how well these systems cope with real-world noise, conflicting between internal and external retrieved contexts, or fast-changing facts. We introduce Retrieval-Aware Robustness Evaluation (RARE), a unified framework and large-scale benchmark that jointly stress-tests query and document perturbations over dynamic, time-sensitive corpora. One of the central features of RARE is a knowledge-graph-driven synthesis pipeline (RARE-Get) that automatically extracts single and multi-hop relations from the customized corpus and generates multi-level question sets without manual intervention. Leveraging this pipeline, we construct a dataset (RARE-Set) spanning 400 expert-level time-sensitive finance, economics, and policy documents and 48,322 questions whose distribution evolves as the underlying sources change. To quantify resilience, we formalize retrieval-conditioned robustness metrics (RARE-Met) that capture a model's ability to remain correct or recover when queries, documents, or real-world retrieval results are systematically altered. Our results show that RAG systems exhibit surprising vulnerability to perturbations, with document robustness consistently being the weakest point regardless of generator size or architecture. RAG systems consistently show lower robustness on multi-hop queries than single-hop queries across all domains.
MARC: Multimodal and Multi-Task Agentic Retrieval-Augmented Generation for Cold-Start Recommender System
Recommender systems (RS) are currently being studied to mitigate limitations during cold-start conditions by leveraging modality information or introducing Agent concepts based on the exceptional reasoning capabilities of Large Language Models (LLMs). Meanwhile, food and beverage recommender systems have traditionally used knowledge graph and ontology concepts due to the domain's unique data attributes and relationship characteristics. On this background, we propose MARC, a multimodal and multi-task cocktail recommender system based on Agentic Retrieval-Augmented Generation (RAG) utilizing graph database under cold-start conditions. The proposed system generates high-quality, contextually appropriate answers through two core processes: a task recognition router and a reflection process. The graph database was constructed by processing cocktail data from Kaggle, and its effectiveness was evaluated using 200 manually crafted questions. The evaluation used both LLM-as-a-judge and human evaluation to demonstrate that answers generated via the graph database outperformed those from a simple vector database in terms of quality. The code is available at https://github.com/diddbwls/cocktail_rec_agentrag
HyPA-RAG: A Hybrid Parameter Adaptive Retrieval-Augmented Generation System for AI Legal and Policy Applications
Large Language Models (LLMs) face limitations in AI legal and policy applications due to outdated knowledge, hallucinations, and poor reasoning in complex contexts. Retrieval-Augmented Generation (RAG) systems address these issues by incorporating external knowledge, but suffer from retrieval errors, ineffective context integration, and high operational costs. This paper presents the Hybrid Parameter-Adaptive RAG (HyPA-RAG) system, designed for the AI legal domain, with NYC Local Law 144 (LL144) as the test case. HyPA-RAG integrates a query complexity classifier for adaptive parameter tuning, a hybrid retrieval approach combining dense, sparse, and knowledge graph methods, and a comprehensive evaluation framework with tailored question types and metrics. Testing on LL144 demonstrates that HyPA-RAG enhances retrieval accuracy, response fidelity, and contextual precision, offering a robust and adaptable solution for high-stakes legal and policy applications.
Leveraging Spreading Activation for Improved Document Retrieval in Knowledge-Graph-Based RAG Systems
Despite initial successes and a variety of architectures, retrieval-augmented generation (RAG) systems still struggle to reliably retrieve and connect the multi-step evidence required for complicated reasoning tasks. Most of the standard RAG frameworks regard all retrieved information as equally reliable, overlooking the varying credibility and interconnected nature of large textual corpora. GraphRAG approaches offer potential improvement to RAG systems by integrating knowledge graphs, which structure information into nodes and edges, capture entity relationships, and enable multi-step logical traversal. However, GraphRAG is not always an ideal solution as it depends on high-quality graph representations of the corpus, which requires either pre-existing knowledge graphs that are expensive to build and update, or automated graph construction pipelines that are often unreliable. Moreover, systems following this paradigm typically use large language models to guide graph traversal and evidence retrieval, leading to challenges similar to those encountered with standard RAG. In this paper, we propose a novel RAG framework that employs the spreading activation algorithm to retrieve information from a corpus of documents interconnected by automatically constructed knowledge graphs, thereby enhancing the performance of large language models on complex tasks such as multi-hop question answering. Experiments show that our method achieves better or comparable performance to iterative RAG methodologies, while also being easily integrable as a plug-and-play module with a wide range of RAG-based approaches. Combining our method with chain-of-thought iterative retrieval yields up to a 39\% absolute gain in answer correctness compared to naive RAG, achieving these results with small open-weight language models and highlighting its effectiveness in resource-constrained settings.
CoT-RAG: Integrating Chain of Thought and Retrieval-Augmented Generation to Enhance Reasoning in Large Language Models
While chain-of-thought (CoT) reasoning improves the performance of large language models (LLMs) in complex tasks, it still has two main challenges: the low reliability of relying solely on LLMs to generate reasoning chains and the interference of natural language reasoning chains on the inference logic of LLMs. To address these issues, we propose CoT-RAG, a novel reasoning framework with three key designs: (i) Knowledge Graph-driven CoT Generation, featuring knowledge graphs to modulate reasoning chain generation of LLMs, thereby enhancing reasoning credibility; (ii) Learnable Knowledge Case-aware RAG, which incorporates retrieval-augmented generation (RAG) into knowledge graphs to retrieve relevant sub-cases and sub-descriptions, providing LLMs with learnable information; (iii) Pseudo-Program Prompting Execution, which encourages LLMs to execute reasoning tasks in pseudo-programs with greater logical rigor. We conduct a comprehensive evaluation on nine public datasets, covering three reasoning problems. Compared with the-state-of-the-art methods, CoT-RAG exhibits a significant accuracy improvement, ranging from 4.0% to 23.0%. Furthermore, testing on four domain-specific datasets, CoT-RAG shows remarkable accuracy and efficient execution, highlighting its strong practical applicability and scalability.
Mindful-RAG: A Study of Points of Failure in Retrieval Augmented Generation
Large Language Models (LLMs) are proficient at generating coherent and contextually relevant text but face challenges when addressing knowledge-intensive queries in domain-specific and factual question-answering tasks. Retrieval-augmented generation (RAG) systems mitigate this by incorporating external knowledge sources, such as structured knowledge graphs (KGs). However, LLMs often struggle to produce accurate answers despite access to KG-extracted information containing necessary facts. Our study investigates this dilemma by analyzing error patterns in existing KG-based RAG methods and identifying eight critical failure points. We observed that these errors predominantly occur due to insufficient focus on discerning the question's intent and adequately gathering relevant context from the knowledge graph facts. Drawing on this analysis, we propose the Mindful-RAG approach, a framework designed for intent-based and contextually aligned knowledge retrieval. This method explicitly targets the identified failures and offers improvements in the correctness and relevance of responses provided by LLMs, representing a significant step forward from existing methods.
Zep: A Temporal Knowledge Graph Architecture for Agent Memory
We introduce Zep, a novel memory layer service for AI agents that outperforms the current state-of-the-art system, MemGPT, in the Deep Memory Retrieval (DMR) benchmark. Additionally, Zep excels in more comprehensive and challenging evaluations than DMR that better reflect real-world enterprise use cases. While existing retrieval-augmented generation (RAG) frameworks for large language model (LLM)-based agents are limited to static document retrieval, enterprise applications demand dynamic knowledge integration from diverse sources including ongoing conversations and business data. Zep addresses this fundamental limitation through its core component Graphiti -- a temporally-aware knowledge graph engine that dynamically synthesizes both unstructured conversational data and structured business data while maintaining historical relationships. In the DMR benchmark, which the MemGPT team established as their primary evaluation metric, Zep demonstrates superior performance (94.8% vs 93.4%). Beyond DMR, Zep's capabilities are further validated through the more challenging LongMemEval benchmark, which better reflects enterprise use cases through complex temporal reasoning tasks. In this evaluation, Zep achieves substantial results with accuracy improvements of up to 18.5% while simultaneously reducing response latency by 90% compared to baseline implementations. These results are particularly pronounced in enterprise-critical tasks such as cross-session information synthesis and long-term context maintenance, demonstrating Zep's effectiveness for deployment in real-world applications.
Learning Efficient and Generalizable Graph Retriever for Knowledge-Graph Question Answering
Large Language Models (LLMs) have shown strong inductive reasoning ability across various domains, but their reliability is hindered by the outdated knowledge and hallucinations. Retrieval-Augmented Generation mitigates these issues by grounding LLMs with external knowledge; however, most existing RAG pipelines rely on unstructured text, limiting interpretability and structured reasoning. Knowledge graphs, which represent facts as relational triples, offer a more structured and compact alternative. Recent studies have explored integrating knowledge graphs with LLMs for knowledge graph question answering (KGQA), with a significant proportion adopting the retrieve-then-reasoning paradigm. In this framework, graph-based retrievers have demonstrated strong empirical performance, yet they still face challenges in generalization ability. In this work, we propose RAPL, a novel framework for efficient and effective graph retrieval in KGQA. RAPL addresses these limitations through three aspects: (1) a two-stage labeling strategy that combines heuristic signals with parametric models to provide causally grounded supervision; (2) a model-agnostic graph transformation approach to capture both intra- and inter-triple interactions, thereby enhancing representational capacity; and (3) a path-based reasoning strategy that facilitates learning from the injected rational knowledge, and supports downstream reasoner through structured inputs. Empirically, RAPL outperforms state-of-the-art methods by 2.66%-20.34%, and significantly reduces the performance gap between smaller and more powerful LLM-based reasoners, as well as the gap under cross-dataset settings, highlighting its superior retrieval capability and generalizability. Codes are available at: https://github.com/tianyao-aka/RAPL.
AutoGraph-R1: End-to-End Reinforcement Learning for Knowledge Graph Construction
Building effective knowledge graphs (KGs) for Retrieval-Augmented Generation (RAG) is pivotal for advancing question answering (QA) systems. However, its effectiveness is hindered by a fundamental disconnect: the knowledge graph (KG) construction process is decoupled from its downstream application, yielding suboptimal graph structures. To bridge this gap, we introduce AutoGraph-R1, the first framework to directly optimize KG construction for task performance using Reinforcement Learning (RL). AutoGraph-R1 trains an LLM constructor by framing graph generation as a policy learning problem, where the reward is derived from the graph's functional utility in a RAG pipeline. We design two novel, task-aware reward functions, one for graphs as knowledge carriers and another as knowledge indices. Across multiple QA benchmarks, AutoGraph-R1 consistently enables graph RAG methods to achieve significant performance gains over using task-agnostic baseline graphs. Our work shows it is possible to close the loop between construction and application, shifting the paradigm from building intrinsically ``good'' graphs to building demonstrably ``useful'' ones.
Improving Factuality in LLMs via Inference-Time Knowledge Graph Construction
Large Language Models (LLMs) often struggle with producing factually consistent answers due to limitations in their parametric memory. Retrieval-Augmented Generation (RAG) paradigms mitigate this issue by incorporating external knowledge at inference time. However, such methods typically handle knowledge as unstructured text, which reduces retrieval accuracy, hinders compositional reasoning, and amplifies the influence of irrelevant information on the factual consistency of LLM outputs. To overcome these limitations, we propose a novel framework that dynamically constructs and expands knowledge graphs (KGs) during inference, integrating both internal knowledge extracted from LLMs and external knowledge retrieved from external sources. Our method begins by extracting a seed KG from the question via prompting, followed by iterative expansion using the LLM's internal knowledge. The KG is then selectively refined through external retrieval, enhancing factual coverage and correcting inaccuracies. We evaluate our approach on three diverse Factual QA benchmarks, demonstrating consistent gains in factual accuracy over baselines. Our findings reveal that inference-time KG construction is a promising direction for enhancing LLM factuality in a structured, interpretable, and scalable manner.
Hierarchical Planning for Complex Tasks with Knowledge Graph-RAG and Symbolic Verification
Large Language Models (LLMs) have shown promise as robotic planners but often struggle with long-horizon and complex tasks, especially in specialized environments requiring external knowledge. While hierarchical planning and Retrieval-Augmented Generation (RAG) address some of these challenges, they remain insufficient on their own and a deeper integration is required for achieving more reliable systems. To this end, we propose a neuro-symbolic approach that enhances LLMs-based planners with Knowledge Graph-based RAG for hierarchical plan generation. This method decomposes complex tasks into manageable subtasks, further expanded into executable atomic action sequences. To ensure formal correctness and proper decomposition, we integrate a Symbolic Validator, which also functions as a failure detector by aligning expected and observed world states. Our evaluation against baseline methods demonstrates the consistent significant advantages of integrating hierarchical planning, symbolic verification, and RAG across tasks of varying complexity and different LLMs. Additionally, our experimental setup and novel metrics not only validate our approach for complex planning but also serve as a tool for assessing LLMs' reasoning and compositional capabilities.
Empowering Large Language Models to Set up a Knowledge Retrieval Indexer via Self-Learning
Retrieval-Augmented Generation (RAG) offers a cost-effective approach to injecting real-time knowledge into large language models (LLMs). Nevertheless, constructing and validating high-quality knowledge repositories require considerable effort. We propose a pre-retrieval framework named Pseudo-Graph Retrieval-Augmented Generation (PG-RAG), which conceptualizes LLMs as students by providing them with abundant raw reading materials and encouraging them to engage in autonomous reading to record factual information in their own words. The resulting concise, well-organized mental indices are interconnected through common topics or complementary facts to form a pseudo-graph database. During the retrieval phase, PG-RAG mimics the human behavior in flipping through notes, identifying fact paths and subsequently exploring the related contexts. Adhering to the principle of the path taken by many is the best, it integrates highly corroborated fact paths to provide a structured and refined sub-graph assisting LLMs. We validated PG-RAG on three specialized question-answering datasets. In single-document tasks, PG-RAG significantly outperformed the current best baseline, KGP-LLaMA, across all key evaluation metrics, with an average overall performance improvement of 11.6%. Specifically, its BLEU score increased by approximately 14.3%, and the QE-F1 metric improved by 23.7%. In multi-document scenarios, the average metrics of PG-RAG were at least 2.35% higher than the best baseline. Notably, the BLEU score and QE-F1 metric showed stable improvements of around 7.55% and 12.75%, respectively. Our code: https://github.com/IAAR-Shanghai/PGRAG.
Distill-SynthKG: Distilling Knowledge Graph Synthesis Workflow for Improved Coverage and Efficiency
Knowledge graphs (KGs) generated by large language models (LLMs) are becoming increasingly valuable for Retrieval-Augmented Generation (RAG) applications that require knowledge-intensive reasoning. However, existing KG extraction methods predominantly rely on prompt-based approaches, which are inefficient for processing large-scale corpora. These approaches often suffer from information loss, particularly with long documents, due to the lack of specialized design for KG construction. Additionally, there is a gap in evaluation datasets and methodologies for ontology-free KG construction. To overcome these limitations, we propose SynthKG, a multi-step, document-level ontology-free KG synthesis workflow based on LLMs. By fine-tuning a smaller LLM on the synthesized document-KG pairs, we streamline the multi-step process into a single-step KG generation approach called Distill-SynthKG, substantially reducing the number of LLM inference calls. Furthermore, we re-purpose existing question-answering datasets to establish KG evaluation datasets and introduce new evaluation metrics. Using KGs produced by Distill-SynthKG, we also design a novel graph-based retrieval framework for RAG. Experimental results demonstrate that Distill-SynthKG not only surpasses all baseline models in KG quality -- including models up to eight times larger -- but also consistently excels in retrieval and question-answering tasks. Our proposed graph retrieval framework also outperforms all KG-retrieval methods across multiple benchmark datasets. We release the SynthKG dataset and Distill-SynthKG model publicly to support further research and development.
CoTKR: Chain-of-Thought Enhanced Knowledge Rewriting for Complex Knowledge Graph Question Answering
Recent studies have explored the use of Large Language Models (LLMs) with Retrieval Augmented Generation (RAG) for Knowledge Graph Question Answering (KGQA). They typically require rewriting retrieved subgraphs into natural language formats comprehensible to LLMs. However, when tackling complex questions, the knowledge rewritten by existing methods may include irrelevant information, omit crucial details, or fail to align with the question's semantics. To address them, we propose a novel rewriting method CoTKR, Chain-of-Thought Enhanced Knowledge Rewriting, for generating reasoning traces and corresponding knowledge in an interleaved manner, thereby mitigating the limitations of single-step knowledge rewriting. Additionally, to bridge the preference gap between the knowledge rewriter and the question answering (QA) model, we propose a training strategy PAQAF, Preference Alignment from Question Answering Feedback, for leveraging feedback from the QA model to further optimize the knowledge rewriter. We conduct experiments using various LLMs across several KGQA benchmarks. Experimental results demonstrate that, compared with previous knowledge rewriting methods, CoTKR generates the most beneficial knowledge representation for QA models, which significantly improves the performance of LLMs in KGQA.
UniOQA: A Unified Framework for Knowledge Graph Question Answering with Large Language Models
OwnThink stands as the most extensive Chinese open-domain knowledge graph introduced in recent times. Despite prior attempts in question answering over OwnThink (OQA), existing studies have faced limitations in model representation capabilities, posing challenges in further enhancing overall accuracy in question answering. In this paper, we introduce UniOQA, a unified framework that integrates two complementary parallel workflows. Unlike conventional approaches, UniOQA harnesses large language models (LLMs) for precise question answering and incorporates a direct-answer-prediction process as a cost-effective complement. Initially, to bolster representation capacity, we fine-tune an LLM to translate questions into the Cypher query language (CQL), tackling issues associated with restricted semantic understanding and hallucinations. Subsequently, we introduce the Entity and Relation Replacement algorithm to ensure the executability of the generated CQL. Concurrently, to augment overall accuracy in question answering, we further adapt the Retrieval-Augmented Generation (RAG) process to the knowledge graph. Ultimately, we optimize answer accuracy through a dynamic decision algorithm. Experimental findings illustrate that UniOQA notably advances SpCQL Logical Accuracy to 21.2% and Execution Accuracy to 54.9%, achieving the new state-of-the-art results on this benchmark. Through ablation experiments, we delve into the superior representation capacity of UniOQA and quantify its performance breakthrough.
AriGraph: Learning Knowledge Graph World Models with Episodic Memory for LLM Agents
Advancements in generative AI have broadened the potential applications of Large Language Models (LLMs) in the development of autonomous agents. Achieving true autonomy requires accumulating and updating knowledge gained from interactions with the environment and effectively utilizing it. Current LLM-based approaches leverage past experiences using a full history of observations, summarization or retrieval augmentation. However, these unstructured memory representations do not facilitate the reasoning and planning essential for complex decision-making. In our study, we introduce AriGraph, a novel method wherein the agent constructs a memory graph that integrates semantic and episodic memories while exploring the environment. This graph structure facilitates efficient associative retrieval of interconnected concepts, relevant to the agent's current state and goals, thus serving as an effective environmental model that enhances the agent's exploratory and planning capabilities. We demonstrate that our Ariadne LLM agent, equipped with this proposed memory architecture augmented with planning and decision-making, effectively handles complex tasks on a zero-shot basis in the TextWorld environment. Our approach markedly outperforms established methods such as full-history, summarization, and Retrieval-Augmented Generation in various tasks, including the cooking challenge from the First TextWorld Problems competition and novel tasks like house cleaning and puzzle Treasure Hunting.
ReviewGraph: A Knowledge Graph Embedding Based Framework for Review Rating Prediction with Sentiment Features
In the hospitality industry, understanding the factors that drive customer review ratings is critical for improving guest satisfaction and business performance. This work proposes ReviewGraph for Review Rating Prediction (RRP), a novel framework that transforms textual customer reviews into knowledge graphs by extracting (subject, predicate, object) triples and associating sentiment scores. Using graph embeddings (Node2Vec) and sentiment features, the framework predicts review rating scores through machine learning classifiers. We compare ReviewGraph performance with traditional NLP baselines (such as Bag of Words, TF-IDF, and Word2Vec) and large language models (LLMs), evaluating them in the HotelRec dataset. In comparison to the state of the art literature, our proposed model performs similar to their best performing model but with lower computational cost (without ensemble). While ReviewGraph achieves comparable predictive performance to LLMs and outperforms baselines on agreement-based metrics such as Cohen's Kappa, it offers additional advantages in interpretability, visual exploration, and potential integration into Retrieval-Augmented Generation (RAG) systems. This work highlights the potential of graph-based representations for enhancing review analytics and lays the groundwork for future research integrating advanced graph neural networks and fine-tuned LLM-based extraction methods. We will share ReviewGraph output and platform open-sourced on our GitHub page https://github.com/aaronlifenghan/ReviewGraph
Graph Counselor: Adaptive Graph Exploration via Multi-Agent Synergy to Enhance LLM Reasoning
Graph Retrieval Augmented Generation (GraphRAG) effectively enhances external knowledge integration capabilities by explicitly modeling knowledge relationships, thereby improving the factual accuracy and generation quality of Large Language Models (LLMs) in specialized domains. However, existing methods suffer from two inherent limitations: 1) Inefficient Information Aggregation: They rely on a single agent and fixed iterative patterns, making it difficult to adaptively capture multi-level textual, structural, and degree information within graph data. 2) Rigid Reasoning Mechanism: They employ preset reasoning schemes, which cannot dynamically adjust reasoning depth nor achieve precise semantic correction. To overcome these limitations, we propose Graph Counselor, an GraphRAG method based on multi-agent collaboration. This method uses the Adaptive Graph Information Extraction Module (AGIEM), where Planning, Thought, and Execution Agents work together to precisely model complex graph structures and dynamically adjust information extraction strategies, addressing the challenges of multi-level dependency modeling and adaptive reasoning depth. Additionally, the Self-Reflection with Multiple Perspectives (SR) module improves the accuracy and semantic consistency of reasoning results through self-reflection and backward reasoning mechanisms. Experiments demonstrate that Graph Counselor outperforms existing methods in multiple graph reasoning tasks, exhibiting higher reasoning accuracy and generalization ability. Our code is available at https://github.com/gjq100/Graph-Counselor.git.
HuixiangDou2: A Robustly Optimized GraphRAG Approach
Large Language Models (LLMs) perform well on familiar queries but struggle with specialized or emerging topics. Graph-based Retrieval-Augmented Generation (GraphRAG) addresses this by structuring domain knowledge as a graph for dynamic retrieval. However, existing pipelines involve complex engineering workflows, making it difficult to isolate the impact of individual components. Evaluating retrieval effectiveness is also challenging due to dataset overlap with LLM pretraining data. In this work, we introduce HuixiangDou2, a robustly optimized GraphRAG framework. Specifically, we leverage the effectiveness of dual-level retrieval and optimize its performance in a 32k context for maximum precision, and compare logic-based retrieval and dual-level retrieval to enhance overall functionality. Our implementation includes comparative experiments on a test set, where Qwen2.5-7B-Instruct initially underperformed. With our approach, the score improved significantly from 60 to 74.5, as illustrated in the Figure. Experiments on domain-specific datasets reveal that dual-level retrieval enhances fuzzy matching, while logic-form retrieval improves structured reasoning. Furthermore, we propose a multi-stage verification mechanism to improve retrieval robustness without increasing computational cost. Empirical results show significant accuracy gains over baselines, highlighting the importance of adaptive retrieval. To support research and adoption, we release HuixiangDou2 as an open-source resource https://github.com/tpoisonooo/huixiangdou2.
Retrieval-Augmented Generation with Hierarchical Knowledge
Graph-based Retrieval-Augmented Generation (RAG) methods have significantly enhanced the performance of large language models (LLMs) in domain-specific tasks. However, existing RAG methods do not adequately utilize the naturally inherent hierarchical knowledge in human cognition, which limits the capabilities of RAG systems. In this paper, we introduce a new RAG approach, called HiRAG, which utilizes hierarchical knowledge to enhance the semantic understanding and structure capturing capabilities of RAG systems in the indexing and retrieval processes. Our extensive experiments demonstrate that HiRAG achieves significant performance improvements over the state-of-the-art baseline methods. The code of our proposed method is available at https://github.com/hhy-huang/HiRAG{https://github.com/hhy-huang/HiRAG}.
PathRAG: Pruning Graph-based Retrieval Augmented Generation with Relational Paths
Retrieval-augmented generation (RAG) improves the response quality of large language models (LLMs) by retrieving knowledge from external databases. Typical RAG approaches split the text database into chunks, organizing them in a flat structure for efficient searches. To better capture the inherent dependencies and structured relationships across the text database, researchers propose to organize textual information into an indexing graph, known asgraph-based RAG. However, we argue that the limitation of current graph-based RAG methods lies in the redundancy of the retrieved information, rather than its insufficiency. Moreover, previous methods use a flat structure to organize retrieved information within the prompts, leading to suboptimal performance. To overcome these limitations, we propose PathRAG, which retrieves key relational paths from the indexing graph, and converts these paths into textual form for prompting LLMs. Specifically, PathRAG effectively reduces redundant information with flow-based pruning, while guiding LLMs to generate more logical and coherent responses with path-based prompting. Experimental results show that PathRAG consistently outperforms state-of-the-art baselines across six datasets and five evaluation dimensions. The code is available at the following link: https://github.com/BUPT-GAMMA/PathRAG
Optimizing open-domain question answering with graph-based retrieval augmented generation
In this work, we benchmark various graph-based retrieval-augmented generation (RAG) systems across a broad spectrum of query types, including OLTP-style (fact-based) and OLAP-style (thematic) queries, to address the complex demands of open-domain question answering (QA). Traditional RAG methods often fall short in handling nuanced, multi-document synthesis tasks. By structuring knowledge as graphs, we can facilitate the retrieval of context that captures greater semantic depth and enhances language model operations. We explore graph-based RAG methodologies and introduce TREX, a novel, cost-effective alternative that combines graph-based and vector-based retrieval techniques. Our benchmarking across four diverse datasets highlights the strengths of different RAG methodologies, demonstrates TREX's ability to handle multiple open-domain QA types, and reveals the limitations of current evaluation methods. In a real-world technical support case study, we demonstrate how TREX solutions can surpass conventional vector-based RAG in efficiently synthesizing data from heterogeneous sources. Our findings underscore the potential of augmenting large language models with advanced retrieval and orchestration capabilities, advancing scalable, graph-based AI solutions.
SimGRAG: Leveraging Similar Subgraphs for Knowledge Graphs Driven Retrieval-Augmented Generation
Recent advancements in large language models (LLMs) have shown impressive versatility across various tasks. To eliminate its hallucinations, retrieval-augmented generation (RAG) has emerged as a powerful approach, leveraging external knowledge sources like knowledge graphs (KGs). In this paper, we study the task of KG-driven RAG and propose a novel Similar Graph Enhanced Retrieval-Augmented Generation (SimGRAG) method. It effectively addresses the challenge of aligning query texts and KG structures through a two-stage process: (1) query-to-pattern, which uses an LLM to transform queries into a desired graph pattern, and (2) pattern-to-subgraph, which quantifies the alignment between the pattern and candidate subgraphs using a graph semantic distance (GSD) metric. We also develop an optimized retrieval algorithm that efficiently identifies the top-k subgraphs within 1-second latency on a 10-million-scale KG. Extensive experiments show that SimGRAG outperforms state-of-the-art KG-driven RAG methods in both question answering and fact verification, offering superior plug-and-play usability and scalability.
TeaRAG: A Token-Efficient Agentic Retrieval-Augmented Generation Framework
Retrieval-Augmented Generation (RAG) utilizes external knowledge to augment Large Language Models' (LLMs) reliability. For flexibility, agentic RAG employs autonomous, multi-round retrieval and reasoning to resolve queries. Although recent agentic RAG has improved via reinforcement learning, they often incur substantial token overhead from search and reasoning processes. This trade-off prioritizes accuracy over efficiency. To address this issue, this work proposes TeaRAG, a token-efficient agentic RAG framework capable of compressing both retrieval content and reasoning steps. 1) First, the retrieved content is compressed by augmenting chunk-based semantic retrieval with a graph retrieval using concise triplets. A knowledge association graph is then built from semantic similarity and co-occurrence. Finally, Personalized PageRank is leveraged to highlight key knowledge within this graph, reducing the number of tokens per retrieval. 2) Besides, to reduce reasoning steps, Iterative Process-aware Direct Preference Optimization (IP-DPO) is proposed. Specifically, our reward function evaluates the knowledge sufficiency by a knowledge matching mechanism, while penalizing excessive reasoning steps. This design can produce high-quality preference-pair datasets, supporting iterative DPO to improve reasoning conciseness. Across six datasets, TeaRAG improves the average Exact Match by 4% and 2% while reducing output tokens by 61% and 59% on Llama3-8B-Instruct and Qwen2.5-14B-Instruct, respectively. Code is available at https://github.com/Applied-Machine-Learning-Lab/TeaRAG.
Personalized Graph-Based Retrieval for Large Language Models
As large language models (LLMs) evolve, their ability to deliver personalized and context-aware responses offers transformative potential for improving user experiences. Existing personalization approaches, however, often rely solely on user history to augment the prompt, limiting their effectiveness in generating tailored outputs, especially in cold-start scenarios with sparse data. To address these limitations, we propose Personalized Graph-based Retrieval-Augmented Generation (PGraphRAG), a framework that leverages user-centric knowledge graphs to enrich personalization. By directly integrating structured user knowledge into the retrieval process and augmenting prompts with user-relevant context, PGraphRAG enhances contextual understanding and output quality. We also introduce the Personalized Graph-based Benchmark for Text Generation, designed to evaluate personalized text generation tasks in real-world settings where user history is sparse or unavailable. Experimental results show that PGraphRAG significantly outperforms state-of-the-art personalization methods across diverse tasks, demonstrating the unique advantages of graph-based retrieval for personalization.
In-depth Analysis of Graph-based RAG in a Unified Framework
Graph-based Retrieval-Augmented Generation (RAG) has proven effective in integrating external knowledge into large language models (LLMs), improving their factual accuracy, adaptability, interpretability, and trustworthiness. A number of graph-based RAG methods have been proposed in the literature. However, these methods have not been systematically and comprehensively compared under the same experimental settings. In this paper, we first summarize a unified framework to incorporate all graph-based RAG methods from a high-level perspective. We then extensively compare representative graph-based RAG methods over a range of questing-answering (QA) datasets -- from specific questions to abstract questions -- and examine the effectiveness of all methods, providing a thorough analysis of graph-based RAG approaches. As a byproduct of our experimental analysis, we are also able to identify new variants of the graph-based RAG methods over specific QA and abstract QA tasks respectively, by combining existing techniques, which outperform the state-of-the-art methods. Finally, based on these findings, we offer promising research opportunities. We believe that a deeper understanding of the behavior of existing methods can provide new valuable insights for future research.
LLaVA Needs More Knowledge: Retrieval Augmented Natural Language Generation with Knowledge Graph for Explaining Thoracic Pathologies
Generating Natural Language Explanations (NLEs) for model predictions on medical images, particularly those depicting thoracic pathologies, remains a critical and challenging task. Existing methodologies often struggle due to general models' insufficient domain-specific medical knowledge and privacy concerns associated with retrieval-based augmentation techniques. To address these issues, we propose a novel Vision-Language framework augmented with a Knowledge Graph (KG)-based datastore, which enhances the model's understanding by incorporating additional domain-specific medical knowledge essential for generating accurate and informative NLEs. Our framework employs a KG-based retrieval mechanism that not only improves the precision of the generated explanations but also preserves data privacy by avoiding direct data retrieval. The KG datastore is designed as a plug-and-play module, allowing for seamless integration with various model architectures. We introduce and evaluate three distinct frameworks within this paradigm: KG-LLaVA, which integrates the pre-trained LLaVA model with KG-RAG; Med-XPT, a custom framework combining MedCLIP, a transformer-based projector, and GPT-2; and Bio-LLaVA, which adapts LLaVA by incorporating the Bio-ViT-L vision model. These frameworks are validated on the MIMIC-NLE dataset, where they achieve state-of-the-art results, underscoring the effectiveness of KG augmentation in generating high-quality NLEs for thoracic pathologies.
HyperGraphRAG: Retrieval-Augmented Generation via Hypergraph-Structured Knowledge Representation
Standard Retrieval-Augmented Generation (RAG) relies on chunk-based retrieval, whereas GraphRAG advances this approach by graph-based knowledge representation. However, existing graph-based RAG approaches are constrained by binary relations, as each edge in an ordinary graph connects only two entities, limiting their ability to represent the n-ary relations (n >= 2) in real-world knowledge. In this work, we propose HyperGraphRAG, a novel hypergraph-based RAG method that represents n-ary relational facts via hyperedges, and consists of knowledge hypergraph construction, retrieval, and generation. Experiments across medicine, agriculture, computer science, and law demonstrate that HyperGraphRAG outperforms both standard RAG and previous graph-based RAG methods in answer accuracy, retrieval efficiency, and generation quality.
HopRAG: Multi-Hop Reasoning for Logic-Aware Retrieval-Augmented Generation
Retrieval-Augmented Generation (RAG) systems often struggle with imperfect retrieval, as traditional retrievers focus on lexical or semantic similarity rather than logical relevance. To address this, we propose HopRAG, a novel RAG framework that augments retrieval with logical reasoning through graph-structured knowledge exploration. During indexing, HopRAG constructs a passage graph, with text chunks as vertices and logical connections established via LLM-generated pseudo-queries as edges. During retrieval, it employs a retrieve-reason-prune mechanism: starting with lexically or semantically similar passages, the system explores multi-hop neighbors guided by pseudo-queries and LLM reasoning to identify truly relevant ones. Experiments on multiple multi-hop benchmarks demonstrate that HopRAG's retrieve-reason-prune mechanism can expand the retrieval scope based on logical connections and improve final answer quality.
Beyond Chunks and Graphs: Retrieval-Augmented Generation through Triplet-Driven Thinking
Retrieval-augmented generation (RAG) is critical for reducing hallucinations and incorporating external knowledge into Large Language Models (LLMs). However, advanced RAG systems face a trade-off between performance and efficiency. Multi-round RAG approaches achieve strong reasoning but incur excessive LLM calls and token costs, while Graph RAG methods suffer from computationally expensive, error-prone graph construction and retrieval redundancy. To address these challenges, we propose T^2RAG, a novel framework that operates on a simple, graph-free knowledge base of atomic triplets. T^2RAG leverages an LLM to decompose questions into searchable triplets with placeholders, which it then iteratively resolves by retrieving evidence from the triplet database. Empirical results show that T^2RAG significantly outperforms state-of-the-art multi-round and Graph RAG methods, achieving an average performance gain of up to 11\% across six datasets while reducing retrieval costs by up to 45\%. Our code is available at https://github.com/rockcor/T2RAG
GFM-RAG: Graph Foundation Model for Retrieval Augmented Generation
Retrieval-augmented generation (RAG) has proven effective in integrating knowledge into large language models (LLMs). However, conventional RAGs struggle to capture complex relationships between pieces of knowledge, limiting their performance in intricate reasoning that requires integrating knowledge from multiple sources. Recently, graph-enhanced retrieval augmented generation (GraphRAG) builds graph structure to explicitly model these relationships, enabling more effective and efficient retrievers. Nevertheless, its performance is still hindered by the noise and incompleteness within the graph structure. To address this, we introduce GFM-RAG, a novel graph foundation model (GFM) for retrieval augmented generation. GFM-RAG is powered by an innovative graph neural network that reasons over graph structure to capture complex query-knowledge relationships. The GFM with 8M parameters undergoes a two-stage training process on large-scale datasets, comprising 60 knowledge graphs with over 14M triples and 700k documents. This results in impressive performance and generalizability for GFM-RAG, making it the first graph foundation model applicable to unseen datasets for retrieval without any fine-tuning required. Extensive experiments on three multi-hop QA datasets and seven domain-specific RAG datasets demonstrate that GFM-RAG achieves state-of-the-art performance while maintaining efficiency and alignment with neural scaling laws, highlighting its potential for further improvement.
Engineering Design Knowledge Graphs from Patented Artefact Descriptions for Retrieval-Augmented Generation in the Design Process
Despite significant popularity, Large-language Models (LLMs) require explicit, contextual facts to support domain-specific knowledge-intensive tasks in the design process. The applications built using LLMs should hence adopt Retrieval-Augmented Generation (RAG) to better suit the design process. In this article, we present a data-driven method to identify explicit facts from patent documents that provide standard descriptions of over 8 million artefacts. In our method, we train roBERTa Transformer-based sequence classification models using our dataset of 44,227 sentences and facts. Upon classifying tokens in a sentence as entities or relationships, our method uses another classifier to identify specific relationship tokens for a given pair of entities so that explicit facts of the form head entity :: relationship :: tail entity are identified. In the benchmark approaches for constructing facts, we use linear classifiers and Graph Neural Networks (GNNs) both incorporating BERT Transformer-based token embeddings to predict associations among the entities and relationships. We apply our method to 4,870 fan system related patents and populate a knowledge base of around 3 million facts. Upon retrieving the facts representing generalisable domain knowledge and the knowledge of specific subsystems and issues, we demonstrate how these facts contextualise LLMs for generating text that is more relevant to the design process.
VideoRAG: Retrieval-Augmented Generation with Extreme Long-Context Videos
Retrieval-Augmented Generation (RAG) has demonstrated remarkable success in enhancing Large Language Models (LLMs) through external knowledge integration, yet its application has primarily focused on textual content, leaving the rich domain of multi-modal video knowledge predominantly unexplored. This paper introduces VideoRAG, the first retrieval-augmented generation framework specifically designed for processing and understanding extremely long-context videos. Our core innovation lies in its dual-channel architecture that seamlessly integrates (i) graph-based textual knowledge grounding for capturing cross-video semantic relationships, and (ii) multi-modal context encoding for efficiently preserving visual features. This novel design empowers VideoRAG to process unlimited-length videos by constructing precise knowledge graphs that span multiple videos while maintaining semantic dependencies through specialized multi-modal retrieval paradigms. Through comprehensive empirical evaluation on our proposed LongerVideos benchmark-comprising over 160 videos totaling 134+ hours across lecture, documentary, and entertainment categories-VideoRAG demonstrates substantial performance compared to existing RAG alternatives and long video understanding methods. The source code of VideoRAG implementation and the benchmark dataset are openly available at: https://github.com/HKUDS/VideoRAG.
Mix-of-Granularity: Optimize the Chunking Granularity for Retrieval-Augmented Generation
Integrating information from different reference data sources is a major challenge for Retrieval-Augmented Generation (RAG) systems because each knowledge source adopts a unique data structure and follows different conventions. Retrieving from multiple knowledge sources with one fixed strategy usually leads to under-exploitation of information. To mitigate this drawback, inspired by Mix-of-Expert, we introduce Mix-of-Granularity (MoG), a method that dynamically determines the optimal granularity of a knowledge database based on input queries using a router. The router is efficiently trained with a newly proposed loss function employing soft labels. We further extend MoG to Mix-of-Granularity-Graph (MoGG), where reference documents are pre-processed into graphs, enabling the retrieval of relevant information from distantly situated chunks. Extensive experiments demonstrate that both MoG and MoGG effectively predict optimal granularity levels, significantly enhancing the performance of the RAG system in downstream tasks. The code of both MoG and MoGG will be made public.
MiniRAG: Towards Extremely Simple Retrieval-Augmented Generation
The growing demand for efficient and lightweight Retrieval-Augmented Generation (RAG) systems has highlighted significant challenges when deploying Small Language Models (SLMs) in existing RAG frameworks. Current approaches face severe performance degradation due to SLMs' limited semantic understanding and text processing capabilities, creating barriers for widespread adoption in resource-constrained scenarios. To address these fundamental limitations, we present MiniRAG, a novel RAG system designed for extreme simplicity and efficiency. MiniRAG introduces two key technical innovations: (1) a semantic-aware heterogeneous graph indexing mechanism that combines text chunks and named entities in a unified structure, reducing reliance on complex semantic understanding, and (2) a lightweight topology-enhanced retrieval approach that leverages graph structures for efficient knowledge discovery without requiring advanced language capabilities. Our extensive experiments demonstrate that MiniRAG achieves comparable performance to LLM-based methods even when using SLMs while requiring only 25\% of the storage space. Additionally, we contribute a comprehensive benchmark dataset for evaluating lightweight RAG systems under realistic on-device scenarios with complex queries. We fully open-source our implementation and datasets at: https://github.com/HKUDS/MiniRAG.
Incorporating Legal Structure in Retrieval-Augmented Generation: A Case Study on Copyright Fair Use
This paper presents a domain-specific implementation of Retrieval-Augmented Generation (RAG) tailored to the Fair Use Doctrine in U.S. copyright law. Motivated by the increasing prevalence of DMCA takedowns and the lack of accessible legal support for content creators, we propose a structured approach that combines semantic search with legal knowledge graphs and court citation networks to improve retrieval quality and reasoning reliability. Our prototype models legal precedents at the statutory factor level (e.g., purpose, nature, amount, market effect) and incorporates citation-weighted graph representations to prioritize doctrinally authoritative sources. We use Chain-of-Thought reasoning and interleaved retrieval steps to better emulate legal reasoning. Preliminary testing suggests this method improves doctrinal relevance in the retrieval process, laying groundwork for future evaluation and deployment of LLM-based legal assistance tools.
HM-RAG: Hierarchical Multi-Agent Multimodal Retrieval Augmented Generation
While Retrieval-Augmented Generation (RAG) augments Large Language Models (LLMs) with external knowledge, conventional single-agent RAG remains fundamentally limited in resolving complex queries demanding coordinated reasoning across heterogeneous data ecosystems. We present HM-RAG, a novel Hierarchical Multi-agent Multimodal RAG framework that pioneers collaborative intelligence for dynamic knowledge synthesis across structured, unstructured, and graph-based data. The framework is composed of three-tiered architecture with specialized agents: a Decomposition Agent that dissects complex queries into contextually coherent sub-tasks via semantic-aware query rewriting and schema-guided context augmentation; Multi-source Retrieval Agents that carry out parallel, modality-specific retrieval using plug-and-play modules designed for vector, graph, and web-based databases; and a Decision Agent that uses consistency voting to integrate multi-source answers and resolve discrepancies in retrieval results through Expert Model Refinement. This architecture attains comprehensive query understanding by combining textual, graph-relational, and web-derived evidence, resulting in a remarkable 12.95% improvement in answer accuracy and a 3.56% boost in question classification accuracy over baseline RAG systems on the ScienceQA and CrisisMMD benchmarks. Notably, HM-RAG establishes state-of-the-art results in zero-shot settings on both datasets. Its modular architecture ensures seamless integration of new data modalities while maintaining strict data governance, marking a significant advancement in addressing the critical challenges of multimodal reasoning and knowledge synthesis in RAG systems. Code is available at https://github.com/ocean-luna/HMRAG.
Retrieval-Augmented Generation with Graphs (GraphRAG)
Retrieval-augmented generation (RAG) is a powerful technique that enhances downstream task execution by retrieving additional information, such as knowledge, skills, and tools from external sources. Graph, by its intrinsic "nodes connected by edges" nature, encodes massive heterogeneous and relational information, making it a golden resource for RAG in tremendous real-world applications. As a result, we have recently witnessed increasing attention on equipping RAG with Graph, i.e., GraphRAG. However, unlike conventional RAG, where the retriever, generator, and external data sources can be uniformly designed in the neural-embedding space, the uniqueness of graph-structured data, such as diverse-formatted and domain-specific relational knowledge, poses unique and significant challenges when designing GraphRAG for different domains. Given the broad applicability, the associated design challenges, and the recent surge in GraphRAG, a systematic and up-to-date survey of its key concepts and techniques is urgently desired. Following this motivation, we present a comprehensive and up-to-date survey on GraphRAG. Our survey first proposes a holistic GraphRAG framework by defining its key components, including query processor, retriever, organizer, generator, and data source. Furthermore, recognizing that graphs in different domains exhibit distinct relational patterns and require dedicated designs, we review GraphRAG techniques uniquely tailored to each domain. Finally, we discuss research challenges and brainstorm directions to inspire cross-disciplinary opportunities. Our survey repository is publicly maintained at https://github.com/Graph-RAG/GraphRAG/.
KAG: Boosting LLMs in Professional Domains via Knowledge Augmented Generation
The recently developed retrieval-augmented generation (RAG) technology has enabled the efficient construction of domain-specific applications. However, it also has limitations, including the gap between vector similarity and the relevance of knowledge reasoning, as well as insensitivity to knowledge logic, such as numerical values, temporal relations, expert rules, and others, which hinder the effectiveness of professional knowledge services. In this work, we introduce a professional domain knowledge service framework called Knowledge Augmented Generation (KAG). KAG is designed to address the aforementioned challenges with the motivation of making full use of the advantages of knowledge graph(KG) and vector retrieval, and to improve generation and reasoning performance by bidirectionally enhancing large language models (LLMs) and KGs through five key aspects: (1) LLM-friendly knowledge representation, (2) mutual-indexing between knowledge graphs and original chunks, (3) logical-form-guided hybrid reasoning engine, (4) knowledge alignment with semantic reasoning, and (5) model capability enhancement for KAG. We compared KAG with existing RAG methods in multihop question answering and found that it significantly outperforms state-of-theart methods, achieving a relative improvement of 19.6% on 2wiki and 33.5% on hotpotQA in terms of F1 score. We have successfully applied KAG to two professional knowledge Q&A tasks of Ant Group, including E-Government Q&A and E-Health Q&A, achieving significant improvement in professionalism compared to RAG methods.
DRAG: Distilling RAG for SLMs from LLMs to Transfer Knowledge and Mitigate Hallucination via Evidence and Graph-based Distillation
Retrieval-Augmented Generation (RAG) methods have proven highly effective for tasks requiring factual consistency and robust knowledge retrieval. However, large-scale RAG systems consume significant computational resources and are prone to generating hallucinated content from Humans. In this work, we introduce DRAG, a novel framework for distilling RAG knowledge from large-scale Language Models (LLMs) into small LMs (SLMs). Our approach leverages evidence- and knowledge graph-based distillation, ensuring that the distilled model retains critical factual knowledge while significantly reducing model size and computational cost. By aligning the smaller model's predictions with a structured knowledge graph and ranked evidence, DRAG effectively mitigates hallucinations and improves factual accuracy. We further present a case demonstrating how our framework mitigates user privacy risks and introduce a corresponding benchmark. Experimental evaluations on multiple benchmarks demonstrate that our method outperforms the prior competitive RAG methods like MiniRAG for SLMs by up to 27.7% using the same models, preserving high-level efficiency and reliability. With DRAG, we provide a practical and resource-efficient roadmap to deploying enhanced retrieval and generation capabilities in small-sized LLMs.
RAG Meets Temporal Graphs: Time-Sensitive Modeling and Retrieval for Evolving Knowledge
Knowledge is inherently time-sensitive and continuously evolves over time. Although current Retrieval-Augmented Generation (RAG) systems enrich LLMs with external knowledge, they largely ignore this temporal nature. This raises two challenges for RAG. First, current RAG methods lack effective time-aware representations. Same facts of different time are difficult to distinguish with vector embeddings or conventional knowledge graphs. Second, most RAG evaluations assume a static corpus, leaving a blind spot regarding update costs and retrieval stability as knowledge evolves. To make RAG time-aware, we propose Temporal GraphRAG (TG-RAG), which models external corpora as a bi-level temporal graph consisting of a temporal knowledge graph with timestamped relations and a hierarchical time graph. Multi-granularity temporal summaries are generated for each time node to capture both key events and broader trends at that time. The design supports incremental updates by extracting new temporal facts from the incoming corpus and merging them into the existing graph. The temporal graph explicitly represents identical facts at different times as distinct edges to avoid ambiguity, and the time hierarchy graph allows only generating reports for new leaf time nodes and their ancestors, ensuring effective and efficient updates. During inference, TG-RAG dynamically retrieves a subgraph within the temporal and semantic scope of the query, enabling precise evidence gathering. Moreover, we introduce ECT-QA, a time-sensitive question-answering dataset featuring both specific and abstract queries, along with a comprehensive evaluation protocol designed to assess incremental update capabilities of RAG systems. Extensive experiments show that TG-RAG significantly outperforms existing baselines, demonstrating the effectiveness of our method in handling temporal knowledge and incremental updates.
Graph RAG-Tool Fusion
Recent developments in retrieval-augmented generation (RAG) for selecting relevant tools from a tool knowledge base enable LLM agents to scale their complex tool calling capabilities to hundreds or thousands of external tools, APIs, or agents-as-tools. However, traditional RAG-based tool retrieval fails to capture structured dependencies between tools, limiting the retrieval accuracy of a retrieved tool's dependencies. For example, among a vector database of tools, a "get stock price" API requires a "stock ticker" parameter from a "get stock ticker" API, and both depend on OS-level internet connectivity tools. In this paper, we address this limitation by introducing Graph RAG-Tool Fusion, a novel plug-and-play approach that combines the strengths of vector-based retrieval with efficient graph traversal to capture all relevant tools (nodes) along with any nested dependencies (edges) within the predefined tool knowledge graph. We also present ToolLinkOS, a new tool selection benchmark of 573 fictional tools, spanning over 15 industries, each with an average of 6.3 tool dependencies. We demonstrate that Graph RAG-Tool Fusion achieves absolute improvements of 71.7% and 22.1% over na\"ive RAG on ToolLinkOS and ToolSandbox benchmarks, respectively (mAP@10). ToolLinkOS dataset is available at https://github.com/EliasLumer/Graph-RAG-Tool-Fusion-ToolLinkOS
From Local to Global: A Graph RAG Approach to Query-Focused Summarization
The use of retrieval-augmented generation (RAG) to retrieve relevant information from an external knowledge source enables large language models (LLMs) to answer questions over private and/or previously unseen document collections. However, RAG fails on global questions directed at an entire text corpus, such as "What are the main themes in the dataset?", since this is inherently a query-focused summarization (QFS) task, rather than an explicit retrieval task. Prior QFS methods, meanwhile, fail to scale to the quantities of text indexed by typical RAG systems. To combine the strengths of these contrasting methods, we propose a Graph RAG approach to question answering over private text corpora that scales with both the generality of user questions and the quantity of source text to be indexed. Our approach uses an LLM to build a graph-based text index in two stages: first to derive an entity knowledge graph from the source documents, then to pregenerate community summaries for all groups of closely-related entities. Given a question, each community summary is used to generate a partial response, before all partial responses are again summarized in a final response to the user. For a class of global sensemaking questions over datasets in the 1 million token range, we show that Graph RAG leads to substantial improvements over a na\"ive RAG baseline for both the comprehensiveness and diversity of generated answers. An open-source, Python-based implementation of both global and local Graph RAG approaches is forthcoming at https://aka.ms/graphrag.
Graph-R1: Towards Agentic GraphRAG Framework via End-to-end Reinforcement Learning
Retrieval-Augmented Generation (RAG) mitigates hallucination in LLMs by incorporating external knowledge, but relies on chunk-based retrieval that lacks structural semantics. GraphRAG methods improve RAG by modeling knowledge as entity-relation graphs, but still face challenges in high construction cost, fixed one-time retrieval, and reliance on long-context reasoning and prompt design. To address these challenges, we propose Graph-R1, an agentic GraphRAG framework via end-to-end reinforcement learning (RL). It introduces lightweight knowledge hypergraph construction, models retrieval as a multi-turn agent-environment interaction, and optimizes the agent process via an end-to-end reward mechanism. Experiments on standard RAG datasets show that Graph-R1 outperforms traditional GraphRAG and RL-enhanced RAG methods in reasoning accuracy, retrieval efficiency, and generation quality.
MechGPT, a language-based strategy for mechanics and materials modeling that connects knowledge across scales, disciplines and modalities
For centuries, researchers have sought out ways to connect disparate areas of knowledge. While early scholars (Galileo, da Vinci, etc.) were experts across fields, specialization has taken hold later. With the advent of Artificial Intelligence, we can now explore relationships across areas (e.g., mechanics-biology) or disparate domains (e.g., failure mechanics-art). To achieve this, we use a fine-tuned Large Language Model (LLM), here for a subset of knowledge in multiscale materials failure. The approach includes the use of a general-purpose LLM to distill question-answer pairs from raw sources followed by LLM fine-tuning. The resulting MechGPT LLM foundation model is used in a series of computational experiments to explore its capacity for knowledge retrieval, various language tasks, hypothesis generation, and connecting knowledge across disparate areas. While the model has some ability to recall knowledge from training, we find that LLMs are particularly useful to extract structural insights through Ontological Knowledge Graphs. These interpretable graph structures provide explanatory insights, frameworks for new research questions, and visual representations of knowledge that also can be used in retrieval-augmented generation. Three versions of MechGPT are discussed, featuring different sizes from 13 billion to 70 billion parameters, and reaching context lengths of more than 10,000 tokens. This provides ample capacity for sophisticated retrieval augmented strategies, as well as agent-based modeling where multiple LLMs interact collaboratively and/or adversarially, the incorporation of new data from the literature or web searches, as well as multimodality.
GraphInsight: Unlocking Insights in Large Language Models for Graph Structure Understanding
Although Large Language Models (LLMs) have demonstrated potential in processing graphs, they struggle with comprehending graphical structure information through prompts of graph description sequences, especially as the graph size increases. We attribute this challenge to the uneven memory performance of LLMs across different positions in graph description sequences, known as ''positional biases''. To address this, we propose GraphInsight, a novel framework aimed at improving LLMs' comprehension of both macro- and micro-level graphical information. GraphInsight is grounded in two key strategies: 1) placing critical graphical information in positions where LLMs exhibit stronger memory performance, and 2) investigating a lightweight external knowledge base for regions with weaker memory performance, inspired by retrieval-augmented generation (RAG). Moreover, GraphInsight explores integrating these two strategies into LLM agent processes for composite graph tasks that require multi-step reasoning. Extensive empirical studies on benchmarks with a wide range of evaluation tasks show that GraphInsight significantly outperforms all other graph description methods (e.g., prompting techniques and reordering strategies) in understanding graph structures of varying sizes.
RAS: Retrieval-And-Structuring for Knowledge-Intensive LLM Generation
Retrieval-augmented language models often struggle with knowledge-intensive tasks due to inefficient retrieval, unstructured knowledge integration, and single-pass architectures. We present Retrieval-And-Structuring (RAS), a novel framework that dynamically constructs and reasons over query-specific knowledge graphs through iterative retrieval and structuring. RAS introduces four key technical innovations: (1) a themescoped retrieval mechanism that efficiently narrows the search space while maintaining retrieval quality, (2) an action planning module that determines knowledge needs and generates focused sub-queries, (3) a dynamic knowledge structuring approach that converts retrieved text into an evolving knowledge graph, and (4) a graph-augmented answering component that leverages the accumulated structured information. Our framework achieves state-of-the-art performance, surpassing leading baselines by 6.4% with open-source language models and 7.0% with proprietary models on seven knowledge-intensive generation datasets across all evaluation metrics. Detailed ablation studies verify the contribution of each technical component to the overall system performance.
GRAIL:Learning to Interact with Large Knowledge Graphs for Retrieval Augmented Reasoning
Large Language Models (LLMs) integrated with Retrieval-Augmented Generation (RAG) techniques have exhibited remarkable performance across a wide range of domains. However, existing RAG approaches primarily operate on unstructured data and demonstrate limited capability in handling structured knowledge such as knowledge graphs. Meanwhile, current graph retrieval methods fundamentally struggle to capture holistic graph structures while simultaneously facing precision control challenges that manifest as either critical information gaps or excessive redundant connections, collectively undermining reasoning performance. To address this challenge, we propose GRAIL: Graph-Retrieval Augmented Interactive Learning, a framework designed to interact with large-scale graphs for retrieval-augmented reasoning. Specifically, GRAIL integrates LLM-guided random exploration with path filtering to establish a data synthesis pipeline, where a fine-grained reasoning trajectory is automatically generated for each task. Based on the synthesized data, we then employ a two-stage training process to learn a policy that dynamically decides the optimal actions at each reasoning step. The overall objective of precision-conciseness balance in graph retrieval is decoupled into fine-grained process-supervised rewards to enhance data efficiency and training stability. In practical deployment, GRAIL adopts an interactive retrieval paradigm, enabling the model to autonomously explore graph paths while dynamically balancing retrieval breadth and precision. Extensive experiments have shown that GRAIL achieves an average accuracy improvement of 21.01% and F1 improvement of 22.43% on three knowledge graph question-answering datasets. Our source code and datasets is available at https://github.com/Changgeww/GRAIL.
HybridRAG: Integrating Knowledge Graphs and Vector Retrieval Augmented Generation for Efficient Information Extraction
Extraction and interpretation of intricate information from unstructured text data arising in financial applications, such as earnings call transcripts, present substantial challenges to large language models (LLMs) even using the current best practices to use Retrieval Augmented Generation (RAG) (referred to as VectorRAG techniques which utilize vector databases for information retrieval) due to challenges such as domain specific terminology and complex formats of the documents. We introduce a novel approach based on a combination, called HybridRAG, of the Knowledge Graphs (KGs) based RAG techniques (called GraphRAG) and VectorRAG techniques to enhance question-answer (Q&A) systems for information extraction from financial documents that is shown to be capable of generating accurate and contextually relevant answers. Using experiments on a set of financial earning call transcripts documents which come in the form of Q&A format, and hence provide a natural set of pairs of ground-truth Q&As, we show that HybridRAG which retrieves context from both vector database and KG outperforms both traditional VectorRAG and GraphRAG individually when evaluated at both the retrieval and generation stages in terms of retrieval accuracy and answer generation. The proposed technique has applications beyond the financial domain
Dialogue Benchmark Generation from Knowledge Graphs with Cost-Effective Retrieval-Augmented LLMs
Dialogue benchmarks are crucial in training and evaluating chatbots engaging in domain-specific conversations. Knowledge graphs (KGs) represent semantically rich and well-organized data spanning various domains, such as DBLP, DBpedia, and YAGO. Traditionally, dialogue benchmarks have been manually created from documents, neglecting the potential of KGs in automating this process. Some question-answering benchmarks are automatically generated using extensive preprocessing from KGs, but they do not support dialogue generation. This paper introduces Chatty-Gen, a novel multi-stage retrieval-augmented generation platform for automatically generating high-quality dialogue benchmarks tailored to a specific domain using a KG. Chatty-Gen decomposes the generation process into manageable stages and uses assertion rules for automatic validation between stages. Our approach enables control over intermediate results to prevent time-consuming restarts due to hallucinations. It also reduces reliance on costly and more powerful commercial LLMs. Chatty-Gen eliminates upfront processing of the entire KG using efficient query-based retrieval to find representative subgraphs based on the dialogue context. Our experiments with several real and large KGs demonstrate that Chatty-Gen significantly outperforms state-of-the-art systems and ensures consistent model and system performance across multiple LLMs of diverse capabilities, such as GPT-4o, Gemini 1.5, Llama 3, and Mistral.
HetaRAG: Hybrid Deep Retrieval-Augmented Generation across Heterogeneous Data Stores
Retrieval-augmented generation (RAG) has become a dominant paradigm for mitigating knowledge hallucination and staleness in large language models (LLMs) while preserving data security. By retrieving relevant evidence from private, domain-specific corpora and injecting it into carefully engineered prompts, RAG delivers trustworthy responses without the prohibitive cost of fine-tuning. Traditional retrieval-augmented generation (RAG) systems are text-only and often rely on a single storage backend, most commonly a vector database. In practice, this monolithic design suffers from unavoidable trade-offs: vector search captures semantic similarity yet loses global context; knowledge graphs excel at relational precision but struggle with recall; full-text indexes are fast and exact yet semantically blind; and relational engines such as MySQL provide strong transactional guarantees but no semantic understanding. We argue that these heterogeneous retrieval paradigms are complementary, and propose a principled fusion scheme to orchestrate them synergistically, mitigating the weaknesses of any single modality. In this work we introduce HetaRAG, a hybrid, deep-retrieval augmented generation framework that orchestrates cross-modal evidence from heterogeneous data stores. We plan to design a system that unifies vector indices, knowledge graphs, full-text engines, and structured databases into a single retrieval plane, dynamically routing and fusing evidence to maximize recall, precision, and contextual fidelity. To achieve this design goal, we carried out preliminary explorations and constructed an initial RAG pipeline; this technical report provides a brief overview. The partial code is available at https://github.com/KnowledgeXLab/HetaRAG.
Relation Extraction with Fine-Tuned Large Language Models in Retrieval Augmented Generation Frameworks
Information Extraction (IE) is crucial for converting unstructured data into structured formats like Knowledge Graphs (KGs). A key task within IE is Relation Extraction (RE), which identifies relationships between entities in text. Various RE methods exist, including supervised, unsupervised, weakly supervised, and rule-based approaches. Recent studies leveraging pre-trained language models (PLMs) have shown significant success in this area. In the current era dominated by Large Language Models (LLMs), fine-tuning these models can overcome limitations associated with zero-shot LLM prompting-based RE methods, especially regarding domain adaptation challenges and identifying implicit relations between entities in sentences. These implicit relations, which cannot be easily extracted from a sentence's dependency tree, require logical inference for accurate identification. This work explores the performance of fine-tuned LLMs and their integration into the Retrieval Augmented-based (RAG) RE approach to address the challenges of identifying implicit relations at the sentence level, particularly when LLMs act as generators within the RAG framework. Empirical evaluations on the TACRED, TACRED-Revisited (TACREV), Re-TACRED, and SemEVAL datasets show significant performance improvements with fine-tuned LLMs, including Llama2-7B, Mistral-7B, and T5 (Large). Notably, our approach achieves substantial gains on SemEVAL, where implicit relations are common, surpassing previous results on this dataset. Additionally, our method outperforms previous works on TACRED, TACREV, and Re-TACRED, demonstrating exceptional performance across diverse evaluation scenarios.
MIRAGE: Scaling Test-Time Inference with Parallel Graph-Retrieval-Augmented Reasoning Chains
Large reasoning models (LRMs) have shown significant progress in test-time scaling through chain-of-thought prompting. Current approaches like search-o1 integrate retrieval augmented generation (RAG) into multi-step reasoning processes but rely on a single, linear reasoning chain while incorporating unstructured textual information in a flat, context-agnostic manner. As a result, these approaches can lead to error accumulation throughout the reasoning chain, which significantly limits its effectiveness in medical question-answering (QA) tasks where both accuracy and traceability are critical requirements. To address these challenges, we propose MIRAGE (Multi-chain Inference with Retrieval-Augmented Graph Exploration), a novel test-time scalable reasoning framework that performs dynamic multi-chain inference over structured medical knowledge graphs. Specifically, MIRAGE 1) decomposes complex queries into entity-grounded sub-questions, 2) executes parallel inference chains, 3) retrieves evidence adaptively via neighbor expansion and multi-hop traversal, and 4) integrates answers using cross-chain verification to resolve contradictions. Experiments on three medical QA benchmarks (GenMedGPT-5k, CMCQA, and ExplainCPE) show that MIRAGE consistently outperforms GPT-4o, Tree-of-Thought variants, and other retrieval-augmented baselines in both automatic and human evaluations. Additionally, MIRAGE improves interpretability by generating explicit reasoning chains that trace each factual claim to concrete chains within the knowledge graph, making it well-suited for complex medical reasoning scenarios. The code will be available for further research.
FIRESPARQL: A LLM-based Framework for SPARQL Query Generation over Scholarly Knowledge Graphs
Question answering over Scholarly Knowledge Graphs (SKGs) remains a challenging task due to the complexity of scholarly content and the intricate structure of these graphs. Large Language Model (LLM) approaches could be used to translate natural language questions (NLQs) into SPARQL queries; however, these LLM-based approaches struggle with SPARQL query generation due to limited exposure to SKG-specific content and the underlying schema. We identified two main types of errors in the LLM-generated SPARQL queries: (i) structural inconsistencies, such as missing or redundant triples in the queries, and (ii) semantic inaccuracies, where incorrect entities or properties are shown in the queries despite a correct query structure. To address these issues, we propose FIRESPARQL, a modular framework that supports fine-tuned LLMs as a core component, with optional context provided via retrieval-augmented generation (RAG) and a SPARQL query correction layer. We evaluate the framework on the SciQA Benchmark using various configurations (zero-shot, zero-shot with RAG, one-shot, fine-tuning, and fine-tuning with RAG) and compare the performance with baseline and state-of-the-art approaches. We measure query accuracy using BLEU and ROUGE metrics, and query result accuracy using relaxed exact match(RelaxedEM), with respect to the gold standards containing the NLQs, SPARQL queries, and the results of the queries. Experimental results demonstrate that fine-tuning achieves the highest overall performance, reaching 0.90 ROUGE-L for query accuracy and 0.85 RelaxedEM for result accuracy on the test set.
Optimizing the Interface Between Knowledge Graphs and LLMs for Complex Reasoning
Integrating Large Language Models (LLMs) with Knowledge Graphs (KGs) results in complex systems with numerous hyperparameters that directly affect performance. While such systems are increasingly common in retrieval-augmented generation, the role of systematic hyperparameter optimization remains underexplored. In this paper, we study this problem in the context of Cognee, a modular framework for end-to-end KG construction and retrieval. Using three multi-hop QA benchmarks (HotPotQA, TwoWikiMultiHop, and MuSiQue) we optimize parameters related to chunking, graph construction, retrieval, and prompting. Each configuration is scored using established metrics (exact match, F1, and DeepEval's LLM-based correctness metric). Our results demonstrate that meaningful gains can be achieved through targeted tuning. While the gains are consistent, they are not uniform, with performance varying across datasets and metrics. This variability highlights both the value of tuning and the limitations of standard evaluation measures. While demonstrating the immediate potential of hyperparameter tuning, we argue that future progress will depend not only on architectural advances but also on clearer frameworks for optimization and evaluation in complex, modular systems.
KG-Infused RAG: Augmenting Corpus-Based RAG with External Knowledge Graphs
Retrieval-Augmented Generation (RAG) improves factual accuracy by grounding responses in external knowledge. However, existing methods typically rely on a single source, either unstructured text or structured knowledge. Moreover, they lack cognitively inspired mechanisms for activating relevant knowledge. To address these issues, we propose KG-Infused RAG, a framework that integrates KGs into RAG systems to implement spreading activation, a cognitive process that enables concept association and inference. KG-Infused RAG retrieves KG facts, expands the query accordingly, and enhances generation by combining corpus passages with structured facts, enabling interpretable, multi-source retrieval grounded in semantic structure. We further improve KG-Infused RAG via preference learning on sampled key stages in the pipeline. Experiments on five QA benchmarks show that KG-Infused RAG consistently outperforms vanilla RAG (by 3.8% to 13.8%). Additionally, when integrated into Self-RAG, KG-Infused RAG brings further performance gains, demonstrating its effectiveness and versatility as a plug-and-play enhancement module for corpus-based RAG methods.
Executable Knowledge Graphs for Replicating AI Research
Replicating AI research is a crucial yet challenging task for large language model (LLM) agents. Existing approaches often struggle to generate executable code, primarily due to insufficient background knowledge and the limitations of retrieval-augmented generation (RAG) methods, which fail to capture latent technical details hidden in referenced papers. Furthermore, previous approaches tend to overlook valuable implementation-level code signals and lack structured knowledge representations that support multi-granular retrieval and reuse. To overcome these challenges, we propose Executable Knowledge Graphs (xKG), a modular and pluggable knowledge base that automatically integrates technical insights, code snippets, and domain-specific knowledge extracted from scientific literature. When integrated into three agent frameworks with two different LLMs, xKG shows substantial performance gains (10.9% with o3-mini) on PaperBench, demonstrating its effectiveness as a general and extensible solution for automated AI research replication. Code will released at https://github.com/zjunlp/xKG.
What's In Your Field? Mapping Scientific Research with Knowledge Graphs and Large Language Models
The scientific literature's exponential growth makes it increasingly challenging to navigate and synthesize knowledge across disciplines. Large language models (LLMs) are powerful tools for understanding scientific text, but they fail to capture detailed relationships across large bodies of work. Unstructured approaches, like retrieval augmented generation, can sift through such corpora to recall relevant facts; however, when millions of facts influence the answer, unstructured approaches become cost prohibitive. Structured representations offer a natural complement -- enabling systematic analysis across the whole corpus. Recent work enhances LLMs with unstructured or semistructured representations of scientific concepts; to complement this, we try extracting structured representations using LLMs. By combining LLMs' semantic understanding with a schema of scientific concepts, we prototype a system that answers precise questions about the literature as a whole. Our schema applies across scientific fields and we extract concepts from it using only 20 manually annotated abstracts. To demonstrate the system, we extract concepts from 30,000 papers on arXiv spanning astrophysics, fluid dynamics, and evolutionary biology. The resulting database highlights emerging trends and, by visualizing the knowledge graph, offers new ways to explore the ever-growing landscape of scientific knowledge. Demo: abby101/surveyor-0 on HF Spaces. Code: https://github.com/chiral-carbon/kg-for-science.
Wikontic: Constructing Wikidata-Aligned, Ontology-Aware Knowledge Graphs with Large Language Models
Knowledge graphs (KGs) provide structured, verifiable grounding for large language models (LLMs), but current LLM-based systems commonly use KGs as auxiliary structures for text retrieval, leaving their intrinsic quality underexplored. In this work, we propose Wikontic, a multi-stage pipeline that constructs KGs from open-domain text by extracting candidate triplets with qualifiers, enforcing Wikidata-based type and relation constraints, and normalizing entities to reduce duplication. The resulting KGs are compact, ontology-consistent, and well-connected; on MuSiQue, the correct answer entity appears in 96% of generated triplets. On HotpotQA, our triplets-only setup achieves 76.0 F1, and on MuSiQue 59.8 F1, matching or surpassing several retrieval-augmented generation baselines that still require textual context. In addition, Wikontic attains state-of-the-art information-retention performance on the MINE-1 benchmark (86%), outperforming prior KG construction methods. Wikontic is also efficient at build time: KG construction uses less than 1,000 output tokens, about 3times fewer than AriGraph and <1/20 of GraphRAG. The proposed pipeline enhances the quality of the generated KG and offers a scalable solution for leveraging structured knowledge in LLMs.
AGRAG: Advanced Graph-based Retrieval-Augmented Generation for LLMs
Graph-based retrieval-augmented generation (Graph-based RAG) has demonstrated significant potential in enhancing Large Language Models (LLMs) with structured knowledge. However, existing methods face three critical challenges: Inaccurate Graph Construction, caused by LLM hallucination; Poor Reasoning Ability, caused by failing to generate explicit reasons telling LLM why certain chunks were selected; and Inadequate Answering, which only partially answers the query due to the inadequate LLM reasoning, making their performance lag behind NaiveRAG on certain tasks. To address these issues, we propose AGRAG, an advanced graph-based retrieval-augmented generation framework. When constructing the graph, AGRAG substitutes the widely used LLM entity extraction method with a statistics-based method, avoiding hallucination and error propagation. When retrieval, AGRAG formulates the graph reasoning procedure as the Minimum Cost Maximum Influence (MCMI) subgraph generation problem, where we try to include more nodes with high influence score, but with less involving edge cost, to make the generated reasoning paths more comprehensive. We prove this problem to be NP-hard, and propose a greedy algorithm to solve it. The MCMI subgraph generated can serve as explicit reasoning paths to tell LLM why certain chunks were retrieved, thereby making the LLM better focus on the query-related part contents of the chunks, reducing the impact of noise, and improving AGRAG's reasoning ability. Furthermore, compared with the simple tree-structured reasoning paths, our MCMI subgraph can allow more complex graph structures, such as cycles, and improve the comprehensiveness of the generated reasoning paths.
InstructRAG: Leveraging Retrieval-Augmented Generation on Instruction Graphs for LLM-Based Task Planning
Recent advancements in large language models (LLMs) have enabled their use as agents for planning complex tasks. Existing methods typically rely on a thought-action-observation (TAO) process to enhance LLM performance, but these approaches are often constrained by the LLMs' limited knowledge of complex tasks. Retrieval-augmented generation (RAG) offers new opportunities by leveraging external databases to ground generation in retrieved information. In this paper, we identify two key challenges (enlargability and transferability) in applying RAG to task planning. We propose InstructRAG, a novel solution within a multi-agent meta-reinforcement learning framework, to address these challenges. InstructRAG includes a graph to organize past instruction paths (sequences of correct actions), an RL-Agent with Reinforcement Learning to expand graph coverage for enlargability, and an ML-Agent with Meta-Learning to improve task generalization for transferability. The two agents are trained end-to-end to optimize overall planning performance. Our experiments on four widely used task planning datasets demonstrate that InstructRAG significantly enhances performance and adapts efficiently to new tasks, achieving up to a 19.2% improvement over the best existing approach.
Graph of Records: Boosting Retrieval Augmented Generation for Long-context Summarization with Graphs
Retrieval-augmented generation (RAG) has revitalized Large Language Models (LLMs) by injecting non-parametric factual knowledge. Compared with long-context LLMs, RAG is considered an effective summarization tool in a more concise and lightweight manner, which can interact with LLMs multiple times using diverse queries to get comprehensive responses. However, the LLM-generated historical responses, which contain potentially insightful information, are largely neglected and discarded by existing approaches, leading to suboptimal results. In this paper, we propose graph of records (GoR), which leverages historical responses generated by LLMs to enhance RAG for long-context global summarization. Inspired by the retrieve-then-generate paradigm of RAG, we construct a graph by establishing an edge between the retrieved text chunks and the corresponding LLM-generated response. To further uncover the intricate correlations between them, GoR further features a graph neural network and an elaborately designed BERTScore-based objective for self-supervised model training, enabling seamless supervision signal backpropagation between reference summaries and node embeddings. We comprehensively compare GoR with 12 baselines across four long-context summarization datasets, and the results indicate that our proposed method reaches the best performance e.g., 15\%, 8\%, and 19\% improvement over retrievers w.r.t. Rouge-L, Rouge-1, and Rouge-2 on the WCEP dataset). Extensive experiments further demonstrate the effectiveness of GoR. Code is available at https://github.com/ulab-uiuc/GoR
CDF-RAG: Causal Dynamic Feedback for Adaptive Retrieval-Augmented Generation
Retrieval-Augmented Generation (RAG) has significantly enhanced large language models (LLMs) in knowledge-intensive tasks by incorporating external knowledge retrieval. However, existing RAG frameworks primarily rely on semantic similarity and correlation-driven retrieval, limiting their ability to distinguish true causal relationships from spurious associations. This results in responses that may be factually grounded but fail to establish cause-and-effect mechanisms, leading to incomplete or misleading insights. To address this issue, we introduce Causal Dynamic Feedback for Adaptive Retrieval-Augmented Generation (CDF-RAG), a framework designed to improve causal consistency, factual accuracy, and explainability in generative reasoning. CDF-RAG iteratively refines queries, retrieves structured causal graphs, and enables multi-hop causal reasoning across interconnected knowledge sources. Additionally, it validates responses against causal pathways, ensuring logically coherent and factually grounded outputs. We evaluate CDF-RAG on four diverse datasets, demonstrating its ability to improve response accuracy and causal correctness over existing RAG-based methods. Our code is publicly available at https://github.com/ elakhatibi/CDF-RAG.
Think-on-Graph 3.0: Efficient and Adaptive LLM Reasoning on Heterogeneous Graphs via Multi-Agent Dual-Evolving Context Retrieval
Retrieval-Augmented Generation (RAG) and Graph-based RAG has become the important paradigm for enhancing Large Language Models (LLMs) with external knowledge. However, existing approaches face a fundamental trade-off. While graph-based methods are inherently dependent on high-quality graph structures, they face significant practical constraints: manually constructed knowledge graphs are prohibitively expensive to scale, while automatically extracted graphs from corpora are limited by the performance of the underlying LLM extractors, especially when using smaller, local-deployed models. This paper presents Think-on-Graph 3.0 (ToG-3), a novel framework that introduces Multi-Agent Context Evolution and Retrieval (MACER) mechanism to overcome these limitations. Our core innovation is the dynamic construction and refinement of a Chunk-Triplets-Community heterogeneous graph index, which pioneeringly incorporates a dual-evolution mechanism of Evolving Query and Evolving Sub-Graph for precise evidence retrieval. This approach addresses a critical limitation of prior Graph-based RAG methods, which typically construct a static graph index in a single pass without adapting to the actual query. A multi-agent system, comprising Constructor, Retriever, Reflector, and Responser agents, collaboratively engages in an iterative process of evidence retrieval, answer generation, sufficiency reflection, and, crucially, evolving query and subgraph. This dual-evolving multi-agent system allows ToG-3 to adaptively build a targeted graph index during reasoning, mitigating the inherent drawbacks of static, one-time graph construction and enabling deep, precise reasoning even with lightweight LLMs. Extensive experiments demonstrate that ToG-3 outperforms compared baselines on both deep and broad reasoning benchmarks, and ablation studies confirm the efficacy of the components of MACER framework.
FG-RAG: Enhancing Query-Focused Summarization with Context-Aware Fine-Grained Graph RAG
Retrieval-Augmented Generation (RAG) enables large language models to provide more precise and pertinent responses by incorporating external knowledge. In the Query-Focused Summarization (QFS) task, GraphRAG-based approaches have notably enhanced the comprehensiveness and diversity of generated responses. However, existing GraphRAG-based approaches predominantly focus on coarse-grained information summarization without being aware of the specific query, and the retrieved content lacks sufficient contextual information to generate comprehensive responses. To address the deficiencies of current RAG systems, we propose Context-Aware Fine-Grained Graph RAG (FG-RAG) to enhance the performance of the QFS task. FG-RAG employs Context-Aware Entity Expansion in graph retrieval to expand the coverage of retrieved entities in the graph, thus providing enough contextual information for the retrieved content. Furthermore, FG-RAG utilizes Query-Level Fine-Grained Summarization to incorporate fine-grained details during response generation, enhancing query awareness for the generated summarization. Our evaluation demonstrates that FG-RAG outperforms other RAG systems in multiple metrics of comprehensiveness, diversity, and empowerment when handling the QFS task. Our implementation is available at https://github.com/BuptWululu/FG-RAG.
Towards Authentic Movie Dubbing with Retrieve-Augmented Director-Actor Interaction Learning
The automatic movie dubbing model generates vivid speech from given scripts, replicating a speaker's timbre from a brief timbre prompt while ensuring lip-sync with the silent video. Existing approaches simulate a simplified workflow where actors dub directly without preparation, overlooking the critical director-actor interaction. In contrast, authentic workflows involve a dynamic collaboration: directors actively engage with actors, guiding them to internalize the context cues, specifically emotion, before performance. To address this issue, we propose a new Retrieve-Augmented Director-Actor Interaction Learning scheme to achieve authentic movie dubbing, termed Authentic-Dubber, which contains three novel mechanisms: (1) We construct a multimodal Reference Footage library to simulate the learning footage provided by directors. Note that we integrate Large Language Models (LLMs) to achieve deep comprehension of emotional representations across multimodal signals. (2) To emulate how actors efficiently and comprehensively internalize director-provided footage during dubbing, we propose an Emotion-Similarity-based Retrieval-Augmentation strategy. This strategy retrieves the most relevant multimodal information that aligns with the target silent video. (3) We develop a Progressive Graph-based speech generation approach that incrementally incorporates the retrieved multimodal emotional knowledge, thereby simulating the actor's final dubbing process. The above mechanisms enable the Authentic-Dubber to faithfully replicate the authentic dubbing workflow, achieving comprehensive improvements in emotional expressiveness. Both subjective and objective evaluations on the V2C Animation benchmark dataset validate the effectiveness. The code and demos are available at https://github.com/AI-S2-Lab/Authentic-Dubber.
ResearchAgent: Iterative Research Idea Generation over Scientific Literature with Large Language Models
Scientific Research, vital for improving human life, is hindered by its inherent complexity, slow pace, and the need for specialized experts. To enhance its productivity, we propose a ResearchAgent, a large language model-powered research idea writing agent, which automatically generates problems, methods, and experiment designs while iteratively refining them based on scientific literature. Specifically, starting with a core paper as the primary focus to generate ideas, our ResearchAgent is augmented not only with relevant publications through connecting information over an academic graph but also entities retrieved from an entity-centric knowledge store based on their underlying concepts, mined and shared across numerous papers. In addition, mirroring the human approach to iteratively improving ideas with peer discussions, we leverage multiple ReviewingAgents that provide reviews and feedback iteratively. Further, they are instantiated with human preference-aligned large language models whose criteria for evaluation are derived from actual human judgments. We experimentally validate our ResearchAgent on scientific publications across multiple disciplines, showcasing its effectiveness in generating novel, clear, and valid research ideas based on human and model-based evaluation results.
GRAF: Graph Retrieval Augmented by Facts for Romanian Legal Multi-Choice Question Answering
Pre-trained Language Models (PLMs) have shown remarkable performances in recent years, setting a new paradigm for NLP research and industry. The legal domain has received some attention from the NLP community partly due to its textual nature. Some tasks from this domain are represented by question-answering (QA) tasks. This work explores the legal domain Multiple-Choice QA (MCQA) for a low-resource language. The contribution of this work is multi-fold. We first introduce JuRO, the first openly available Romanian legal MCQA dataset, comprising three different examinations and a number of 10,836 total questions. Along with this dataset, we introduce CROL, an organized corpus of laws that has a total of 93 distinct documents with their modifications from 763 time spans, that we leveraged in this work for Information Retrieval (IR) techniques. Moreover, we are the first to propose Law-RoG, a Knowledge Graph (KG) for the Romanian language, and this KG is derived from the aforementioned corpus. Lastly, we propose a novel approach for MCQA, Graph Retrieval Augmented by Facts (GRAF), which achieves competitive results with generally accepted SOTA methods and even exceeds them in most settings.
Plan of Knowledge: Retrieval-Augmented Large Language Models for Temporal Knowledge Graph Question Answering
Temporal Knowledge Graph Question Answering (TKGQA) aims to answer time-sensitive questions by leveraging factual information from Temporal Knowledge Graphs (TKGs). While previous studies have employed pre-trained TKG embeddings or graph neural networks to inject temporal knowledge, they fail to fully understand the complex semantic information of time constraints. Recently, Large Language Models (LLMs) have shown remarkable progress, benefiting from their strong semantic understanding and reasoning generalization capabilities. However, their temporal reasoning ability remains limited. LLMs frequently suffer from hallucination and a lack of knowledge. To address these limitations, we propose the Plan of Knowledge framework with a contrastive temporal retriever, which is named PoK. Specifically, the proposed Plan of Knowledge module decomposes a complex temporal question into a sequence of sub-objectives from the pre-defined tools, serving as intermediate guidance for reasoning exploration. In parallel, we construct a Temporal Knowledge Store (TKS) with a contrastive retrieval framework, enabling the model to selectively retrieve semantically and temporally aligned facts from TKGs. By combining structured planning with temporal knowledge retrieval, PoK effectively enhances the interpretability and factual consistency of temporal reasoning. Extensive experiments on four benchmark TKGQA datasets demonstrate that PoK significantly improves the retrieval precision and reasoning accuracy of LLMs, surpassing the performance of the state-of-the-art TKGQA methods by 56.0% at most.
Graph-Augmented Reasoning: Evolving Step-by-Step Knowledge Graph Retrieval for LLM Reasoning
Recent large language model (LLM) reasoning, despite its success, suffers from limited domain knowledge, susceptibility to hallucinations, and constrained reasoning depth, particularly in small-scale models deployed in resource-constrained environments. This paper presents the first investigation into integrating step-wise knowledge graph retrieval with step-wise reasoning to address these challenges, introducing a novel paradigm termed as graph-augmented reasoning. Our goal is to enable frozen, small-scale LLMs to retrieve and process relevant mathematical knowledge in a step-wise manner, enhancing their problem-solving abilities without additional training. To this end, we propose KG-RAR, a framework centered on process-oriented knowledge graph construction, a hierarchical retrieval strategy, and a universal post-retrieval processing and reward model (PRP-RM) that refines retrieved information and evaluates each reasoning step. Experiments on the Math500 and GSM8K benchmarks across six models demonstrate that KG-RAR yields encouraging results, achieving a 20.73\% relative improvement with Llama-3B on Math500.
Graph Retrieval-Augmented LLM for Conversational Recommendation Systems
Conversational Recommender Systems (CRSs) have emerged as a transformative paradigm for offering personalized recommendations through natural language dialogue. However, they face challenges with knowledge sparsity, as users often provide brief, incomplete preference statements. While recent methods have integrated external knowledge sources to mitigate this, they still struggle with semantic understanding and complex preference reasoning. Recent Large Language Models (LLMs) demonstrate promising capabilities in natural language understanding and reasoning, showing significant potential for CRSs. Nevertheless, due to the lack of domain knowledge, existing LLM-based CRSs either produce hallucinated recommendations or demand expensive domain-specific training, which largely limits their applicability. In this work, we present G-CRS (Graph Retrieval-Augmented Large Language Model for Conversational Recommender Systems), a novel training-free framework that combines graph retrieval-augmented generation and in-context learning to enhance LLMs' recommendation capabilities. Specifically, G-CRS employs a two-stage retrieve-and-recommend architecture, where a GNN-based graph reasoner first identifies candidate items, followed by Personalized PageRank exploration to jointly discover potential items and similar user interactions. These retrieved contexts are then transformed into structured prompts for LLM reasoning, enabling contextually grounded recommendations without task-specific training. Extensive experiments on two public datasets show that G-CRS achieves superior recommendation performance compared to existing methods without requiring task-specific training.
G-Refer: Graph Retrieval-Augmented Large Language Model for Explainable Recommendation
Explainable recommendation has demonstrated significant advantages in informing users about the logic behind recommendations, thereby increasing system transparency, effectiveness, and trustworthiness. To provide personalized and interpretable explanations, existing works often combine the generation capabilities of large language models (LLMs) with collaborative filtering (CF) information. CF information extracted from the user-item interaction graph captures the user behaviors and preferences, which is crucial for providing informative explanations. However, due to the complexity of graph structure, effectively extracting the CF information from graphs still remains a challenge. Moreover, existing methods often struggle with the integration of extracted CF information with LLMs due to its implicit representation and the modality gap between graph structures and natural language explanations. To address these challenges, we propose G-Refer, a framework using graph retrieval-augmented large language models (LLMs) for explainable recommendation. Specifically, we first employ a hybrid graph retrieval mechanism to retrieve explicit CF signals from both structural and semantic perspectives. The retrieved CF information is explicitly formulated as human-understandable text by the proposed graph translation and accounts for the explanations generated by LLMs. To bridge the modality gap, we introduce knowledge pruning and retrieval-augmented fine-tuning to enhance the ability of LLMs to process and utilize the retrieved CF information to generate explanations. Extensive experiments show that G-Refer achieves superior performance compared with existing methods in both explainability and stability. Codes and data are available at https://github.com/Yuhan1i/G-Refer.
KG-Retriever: Efficient Knowledge Indexing for Retrieval-Augmented Large Language Models
Large language models with retrieval-augmented generation encounter a pivotal challenge in intricate retrieval tasks, e.g., multi-hop question answering, which requires the model to navigate across multiple documents and generate comprehensive responses based on fragmented information. To tackle this challenge, we introduce a novel Knowledge Graph-based RAG framework with a hierarchical knowledge retriever, termed KG-Retriever. The retrieval indexing in KG-Retriever is constructed on a hierarchical index graph that consists of a knowledge graph layer and a collaborative document layer. The associative nature of graph structures is fully utilized to strengthen intra-document and inter-document connectivity, thereby fundamentally alleviating the information fragmentation problem and meanwhile improving the retrieval efficiency in cross-document retrieval of LLMs. With the coarse-grained collaborative information from neighboring documents and concise information from the knowledge graph, KG-Retriever achieves marked improvements on five public QA datasets, showing the effectiveness and efficiency of our proposed RAG framework.
Learning to Plan for Retrieval-Augmented Large Language Models from Knowledge Graphs
Improving the performance of large language models (LLMs) in complex question-answering (QA) scenarios has always been a research focal point. Recent studies have attempted to enhance LLMs' performance by combining step-wise planning with external retrieval. While effective for advanced models like GPT-3.5, smaller LLMs face challenges in decomposing complex questions, necessitating supervised fine-tuning. Previous work has relied on manual annotation and knowledge distillation from teacher LLMs, which are time-consuming and not accurate enough. In this paper, we introduce a novel framework for enhancing LLMs' planning capabilities by using planning data derived from knowledge graphs (KGs). LLMs fine-tuned with this data have improved planning capabilities, better equipping them to handle complex QA tasks that involve retrieval. Evaluations on multiple datasets, including our newly proposed benchmark, highlight the effectiveness of our framework and the benefits of KG-derived planning data.
REVEAL: Retrieval-Augmented Visual-Language Pre-Training with Multi-Source Multimodal Knowledge Memory
In this paper, we propose an end-to-end Retrieval-Augmented Visual Language Model (REVEAL) that learns to encode world knowledge into a large-scale memory, and to retrieve from it to answer knowledge-intensive queries. REVEAL consists of four key components: the memory, the encoder, the retriever and the generator. The large-scale memory encodes various sources of multimodal world knowledge (e.g. image-text pairs, question answering pairs, knowledge graph triplets, etc) via a unified encoder. The retriever finds the most relevant knowledge entries in the memory, and the generator fuses the retrieved knowledge with the input query to produce the output. A key novelty in our approach is that the memory, encoder, retriever and generator are all pre-trained end-to-end on a massive amount of data. Furthermore, our approach can use a diverse set of multimodal knowledge sources, which is shown to result in significant gains. We show that REVEAL achieves state-of-the-art results on visual question answering and image captioning.
Harnessing Large Language Models for Knowledge Graph Question Answering via Adaptive Multi-Aspect Retrieval-Augmentation
Large Language Models (LLMs) demonstrate remarkable capabilities, yet struggle with hallucination and outdated knowledge when tasked with complex knowledge reasoning, resulting in factually incorrect outputs. Previous studies have attempted to mitigate it by retrieving factual knowledge from large-scale knowledge graphs (KGs) to assist LLMs in logical reasoning and prediction of answers. However, this kind of approach often introduces noise and irrelevant data, especially in situations with extensive context from multiple knowledge aspects. In this way, LLM attention can be potentially mislead from question and relevant information. In our study, we introduce an Adaptive Multi-Aspect Retrieval-augmented over KGs (Amar) framework. This method retrieves knowledge including entities, relations, and subgraphs, and converts each piece of retrieved text into prompt embeddings. The Amar framework comprises two key sub-components: 1) a self-alignment module that aligns commonalities among entities, relations, and subgraphs to enhance retrieved text, thereby reducing noise interference; 2) a relevance gating module that employs a soft gate to learn the relevance score between question and multi-aspect retrieved data, to determine which information should be used to enhance LLMs' output, or even filtered altogether. Our method has achieved state-of-the-art performance on two common datasets, WebQSP and CWQ, showing a 1.9\% improvement in accuracy over its best competitor and a 6.6\% improvement in logical form generation over a method that directly uses retrieved text as context prompts. These results demonstrate the effectiveness of Amar in improving the reasoning of LLMs.
CRAT: A Multi-Agent Framework for Causality-Enhanced Reflective and Retrieval-Augmented Translation with Large Language Models
Large language models (LLMs) have shown great promise in machine translation, but they still struggle with contextually dependent terms, such as new or domain-specific words. This leads to inconsistencies and errors that are difficult to address. Existing solutions often depend on manual identification of such terms, which is impractical given the complexity and evolving nature of language. While Retrieval-Augmented Generation (RAG) could provide some assistance, its application to translation is limited by issues such as hallucinations from information overload. In this paper, we propose CRAT, a novel multi-agent translation framework that leverages RAG and causality-enhanced self-reflection to address these challenges. This framework consists of several specialized agents: the Unknown Terms Identification agent detects unknown terms within the context, the Knowledge Graph (KG) Constructor agent extracts relevant internal knowledge about these terms and retrieves bilingual information from external sources, the Causality-enhanced Judge agent validates the accuracy of the information, and the Translator agent incorporates the refined information into the final output. This automated process allows for more precise and consistent handling of key terms during translation. Our results show that CRAT significantly improves translation accuracy, particularly in handling context-sensitive terms and emerging vocabulary.
