- Designing High-Tc Superconductors with BCS-inspired Screening, Density Functional Theory and Deep-learning We develop a multi-step workflow for the discovery of conventional superconductors, starting with a Bardeen Cooper Schrieffer inspired pre-screening of 1736 materials with high Debye temperature and electronic density of states. Next, we perform electron-phonon coupling calculations for 1058 of them to establish a large and systematic database of BCS superconducting properties. Using the McMillan-Allen-Dynes formula, we identify 105 dynamically stable materials with transition temperatures, Tc>5 K. Additionally, we analyze trends in our dataset and individual materials including MoN, VC, VTe, KB6, Ru3NbC, V3Pt, ScN, LaN2, RuO2, and TaC. We demonstrate that deep-learning(DL) models can predict superconductor properties faster than direct first principles computations. Notably, we find that by predicting the Eliashberg function as an intermediate quantity, we can improve model performance versus a direct DL prediction of Tc. We apply the trained models on the crystallographic open database and pre-screen candidates for further DFT calculations. 2 authors · Apr 29, 2022
- Optical Properties of Superconducting K_{0.8}Fe_{1.7}(Se_{0.73}S_{0.27})_2 Single Crystals The optical properties of the superconducting K_{0.8}Fe_{1.7}(Se_{0.73}S_{0.27})_2 single crystals with a critical temperature T_capprox 26 K have been measured in the {\it ab} plane in a wide frequency range using both infrared Fourier-transform spectroscopy and spectroscopic ellipsometry at temperatures of 4--300 K. The normal-state reflectance of K_{0.8}Fe_{1.7}(Se_{0.73}S_{0.27})_2 is analyzed using a Drude-Lorentz model with one Drude component. The temperature dependences of the plasma frequency, optical conductivity, scattering rate, and dc resistivity of the Drude contribution in the normal state are presented. In the superconducting state, we observe a signature of the superconducting gap opening at 2Δ(5~K) = 11.8~meV. An abrupt decrease in the low-frequency dielectric permittivity varepsilon _1(ω) at T < T_c also evidences the formation of the superconducting condensate. The superconducting plasma frequency ω_{pl,s} = (213pm 5)~cm^{-1} and the magnetic penetration depth λ=(7.5pm 0.2)~μm at T=5~K are determined. 5 authors · Nov 14, 2025
1 Novel results obtained by modeling of dynamic processes in superconductors: phase-slip centers as cooling engines Based on a time-dependent Ginzburg-Landau system of equations and finite element modeling, we present novel results related with the physics of phase-slippage in superconducting wires surrounded by a non-superconductive environment. These results are obtained within our previously reported approach related to superconducting rings and superconductive gravitational wave detector transducers. It is shown that the phase-slip centers (PSCs) can be effective in originating not only positive but also negative thermal fluxes. With an appropriate design utilizing thermal diodes, PSCs can serve as cryocooling engines. Operating at Tsim 1 K cryostat cold-finger, they can achieve sub-Kelvin temperatures without using ^3He. 4 authors · Nov 2, 2022