2 CyberMetric: A Benchmark Dataset for Evaluating Large Language Models Knowledge in Cybersecurity Large Language Models (LLMs) excel across various domains, from computer vision to medical diagnostics. However, understanding the diverse landscape of cybersecurity, encompassing cryptography, reverse engineering, and managerial facets like risk assessment, presents a challenge, even for human experts. In this paper, we introduce CyberMetric, a benchmark dataset comprising 10,000 questions sourced from standards, certifications, research papers, books, and other publications in the cybersecurity domain. The questions are created through a collaborative process, i.e., merging expert knowledge with LLMs, including GPT-3.5 and Falcon-180B. Human experts spent over 200 hours verifying their accuracy and relevance. Beyond assessing LLMs' knowledge, the dataset's main goal is to facilitate a fair comparison between humans and different LLMs in cybersecurity. To achieve this, we carefully selected 80 questions covering a wide range of topics within cybersecurity and involved 30 participants of diverse expertise levels, facilitating a comprehensive comparison between human and machine intelligence in this area. The findings revealed that LLMs outperformed humans in almost every aspect of cybersecurity. 4 authors · Feb 12, 2024
1 CyberLLMInstruct: A New Dataset for Analysing Safety of Fine-Tuned LLMs Using Cyber Security Data The integration of large language models (LLMs) into cyber security applications presents significant opportunities, such as enhancing threat analysis and malware detection, but can also introduce critical risks and safety concerns, including personal data leakage and automated generation of new malware. To address these challenges, we developed CyberLLMInstruct, a dataset of 54,928 instruction-response pairs spanning cyber security tasks such as malware analysis, phishing simulations, and zero-day vulnerabilities. The dataset was constructed through a multi-stage process. This involved sourcing data from multiple resources, filtering and structuring it into instruction-response pairs, and aligning it with real-world scenarios to enhance its applicability. Seven open-source LLMs were chosen to test the usefulness of CyberLLMInstruct: Phi 3 Mini 3.8B, Mistral 7B, Qwen 2.5 7B, Llama 3 8B, Llama 3.1 8B, Gemma 2 9B, and Llama 2 70B. In our primary example, we rigorously assess the safety of fine-tuned models using the OWASP top 10 framework, finding that fine-tuning reduces safety resilience across all tested LLMs and every adversarial attack (e.g., the security score of Llama 3.1 8B against prompt injection drops from 0.95 to 0.15). In our second example, we show that these same fine-tuned models can also achieve up to 92.50 percent accuracy on the CyberMetric benchmark. These findings highlight a trade-off between performance and safety, showing the importance of adversarial testing and further research into fine-tuning methodologies that can mitigate safety risks while still improving performance across diverse datasets and domains. The dataset creation pipeline, along with comprehensive documentation, examples, and resources for reproducing our results, is publicly available at https://github.com/Adelsamir01/CyberLLMInstruct. 3 authors · Mar 12, 2025
- Less Data, More Security: Advancing Cybersecurity LLMs Specialization via Resource-Efficient Domain-Adaptive Continuous Pre-training with Minimal Tokens While Large Language Models (LLMs) demonstrate exceptional natural language capabilities, general-purpose models lack specialized domain knowledge for effective cybersecurity analysis. In this work, we investigate Domain-Adaptive Continuous Pretraining (DAP) as a methodology for enhancing cybersecurity understanding in pretrained LLMs while preserving general language capabilities. We systematically adapted three decoder-based architectures -- Llama-3.1-8B, DeepSeek-R1-Distill-Qwen-14B, and Llama-3.3-70B-Instruct -- using a curated 126-million-word cybersecurity corpus from standards, academic literature, and various other sources. Our approach employed constrained training parameters and distributed FSDP training to balance domain specialization with knowledge preservation. Evaluation across three cybersecurity benchmarks, namely, CTI-MCQ, CyberMetric, and SecEval, demonstrates consistent improvements post-adaptation. The Llama-3.3-70B-Ins-DAP model achieved state-of-the-art accuracies of 0.718, 0.933, and 0.864, respectively, outperforming specialized models, including Llama-Primus-Base. Notably, competitive performance was achieved using substantially smaller datasets (118.8 million versus 2.77 billion tokens), demonstrating efficient domain specialization viability. We establish that targeted continuous pretraining enables effective cybersecurity domain adaptation with computational feasibility, providing foundations for specialized AI assistants in threat analysis, vulnerability assessment, and security documentation while challenging prevailing assumptions about data requirements for LLM specialization. 5 authors · Jun 30, 2025