OrchDAG: Complex Tool Orchestration in Multi-Turn Interactions with Plan DAGs
Abstract
A synthetic data generation pipeline using directed acyclic graphs (DAGs) and a graph-based reward improves multi-turn tool use by leveraging topological structure and complexity in reinforcement learning.
Agentic tool use has gained traction with the rise of agentic tool calling, yet most existing work overlooks the complexity of multi-turn tool interactions. We introduce OrchDAG, a synthetic data generation pipeline that models tool execution as directed acyclic graphs (DAGs) with controllable complexity. Using this dataset, we benchmark model performance and propose a graph-based reward to enhance RLVR training. Experiments show that the dataset presents a challenging but solvable benchmark, and the proposed reward is effective when combined with GRPO-style algorithms, highlighting the importance of leveraging topological structure and data complexity in multi-turn tool use.
Models citing this paper 0
No model linking this paper
Datasets citing this paper 0
No dataset linking this paper
Spaces citing this paper 0
No Space linking this paper
Collections including this paper 0
No Collection including this paper