Upload hf_job_face_embedding.py with huggingface_hub
Browse files- hf_job_face_embedding.py +85 -28
hf_job_face_embedding.py
CHANGED
|
@@ -57,22 +57,92 @@ def init_face_embedder(device='cuda'):
|
|
| 57 |
return app
|
| 58 |
|
| 59 |
|
| 60 |
-
def
|
| 61 |
-
"""
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 62 |
try:
|
| 63 |
-
|
| 64 |
-
|
| 65 |
-
|
| 66 |
-
|
| 67 |
-
|
| 68 |
-
x2 = min(w, x2 + pad)
|
| 69 |
-
y2 = min(h, y2 + pad)
|
| 70 |
crop = image_bgr[y1:y2, x1:x2]
|
| 71 |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 72 |
faces = app.get(crop)
|
| 73 |
if len(faces) == 0:
|
| 74 |
return None
|
| 75 |
|
|
|
|
| 76 |
face = max(faces, key=lambda x: x.det_score)
|
| 77 |
embedding = face.embedding
|
| 78 |
embedding_norm = embedding / np.linalg.norm(embedding)
|
|
@@ -96,6 +166,7 @@ def process_batch(batch, sam3d_dataset):
|
|
| 96 |
|
| 97 |
for idx, image_pil in enumerate(images):
|
| 98 |
image_id = Path(image_paths[idx]).stem if image_paths[idx] else f'img_{idx:06d}'
|
|
|
|
| 99 |
|
| 100 |
# Find corresponding SAM3D data
|
| 101 |
sam3d_row = sam3d_dataset.filter(lambda x: x['image_id'] == image_id).take(1)
|
|
@@ -121,31 +192,17 @@ def process_batch(batch, sam3d_dataset):
|
|
| 121 |
kpts2d = human.get('keypoints_2d')
|
| 122 |
kpts3d = human.get('keypoints_3d')
|
| 123 |
|
| 124 |
-
# Check if
|
| 125 |
-
if
|
| 126 |
-
embeddings.append(None)
|
| 127 |
-
continue
|
| 128 |
-
|
| 129 |
-
kpts2d_arr = np.array(kpts2d)
|
| 130 |
-
kpts3d_arr = np.array(kpts3d)
|
| 131 |
-
|
| 132 |
-
if len(kpts2d_arr) < 3 or len(kpts3d_arr) < 3:
|
| 133 |
embeddings.append(None)
|
| 134 |
continue
|
| 135 |
|
| 136 |
-
|
| 137 |
-
nose_3d = kpts3d_arr[0]
|
| 138 |
-
left_eye_3d = kpts3d_arr[1]
|
| 139 |
-
right_eye_3d = kpts3d_arr[2]
|
| 140 |
-
|
| 141 |
-
if (np.linalg.norm(nose_3d) < 1e-6 or
|
| 142 |
-
np.linalg.norm(left_eye_3d) < 1e-6 or
|
| 143 |
-
np.linalg.norm(right_eye_3d) < 1e-6):
|
| 144 |
embeddings.append(None)
|
| 145 |
continue
|
| 146 |
|
| 147 |
-
# Extract embedding
|
| 148 |
-
embedding = extract_embedding(face_app, image_bgr, bbox)
|
| 149 |
embeddings.append(embedding)
|
| 150 |
|
| 151 |
results_list.append({
|
|
|
|
| 57 |
return app
|
| 58 |
|
| 59 |
|
| 60 |
+
def make_square_bbox_with_padding(bbox, img_width, img_height, padding=0.2):
|
| 61 |
+
"""Convert bbox to square with padding for face detection"""
|
| 62 |
+
x1, y1, x2, y2 = bbox
|
| 63 |
+
w = x2 - x1
|
| 64 |
+
h = y2 - y1
|
| 65 |
+
|
| 66 |
+
# Make square
|
| 67 |
+
size = max(w, h)
|
| 68 |
+
cx = (x1 + x2) / 2
|
| 69 |
+
cy = (y1 + y2) / 2
|
| 70 |
+
|
| 71 |
+
# Add padding
|
| 72 |
+
size = size * (1 + padding)
|
| 73 |
+
|
| 74 |
+
# Get square bbox
|
| 75 |
+
x1_sq = max(0, int(cx - size / 2))
|
| 76 |
+
y1_sq = max(0, int(cy - size / 2))
|
| 77 |
+
x2_sq = min(img_width, int(cx + size / 2))
|
| 78 |
+
y2_sq = min(img_height, int(cy + size / 2))
|
| 79 |
+
|
| 80 |
+
return [x1_sq, y1_sq, x2_sq, y2_sq]
|
| 81 |
+
|
| 82 |
+
|
| 83 |
+
def has_valid_face(keypoints_2d, keypoints_3d, img_width, img_height):
|
| 84 |
+
"""Check if human has a valid, visible face"""
|
| 85 |
+
if keypoints_2d is None or keypoints_3d is None:
|
| 86 |
+
return False
|
| 87 |
+
|
| 88 |
+
kpts2d_arr = np.array(keypoints_2d)
|
| 89 |
+
kpts3d_arr = np.array(keypoints_3d)
|
| 90 |
+
|
| 91 |
+
if len(kpts2d_arr) < 3 or len(kpts3d_arr) < 3:
|
| 92 |
+
return False
|
| 93 |
+
|
| 94 |
+
# Check face keypoints (nose, left eye, right eye)
|
| 95 |
+
nose_2d = kpts2d_arr[0]
|
| 96 |
+
left_eye_2d = kpts2d_arr[1]
|
| 97 |
+
right_eye_2d = kpts2d_arr[2]
|
| 98 |
+
nose_3d = kpts3d_arr[0]
|
| 99 |
+
left_eye_3d = kpts3d_arr[1]
|
| 100 |
+
right_eye_3d = kpts3d_arr[2]
|
| 101 |
+
|
| 102 |
+
# Check 3D keypoints are valid (not at origin)
|
| 103 |
+
keypoints_valid_3d = (np.linalg.norm(nose_3d) > 1e-6 and
|
| 104 |
+
np.linalg.norm(left_eye_3d) > 1e-6 and
|
| 105 |
+
np.linalg.norm(right_eye_3d) > 1e-6)
|
| 106 |
+
|
| 107 |
+
if not keypoints_valid_3d:
|
| 108 |
+
return False
|
| 109 |
+
|
| 110 |
+
# Check 2D keypoints are within image bounds
|
| 111 |
+
for kp in [nose_2d, left_eye_2d, right_eye_2d]:
|
| 112 |
+
if (kp[0] < 0 or kp[0] >= img_width or
|
| 113 |
+
kp[1] < 0 or kp[1] >= img_height):
|
| 114 |
+
return False
|
| 115 |
+
|
| 116 |
+
return True
|
| 117 |
+
|
| 118 |
+
|
| 119 |
+
def extract_embedding(app, image_bgr, bbox, img_width, img_height):
|
| 120 |
+
"""Extract face embedding from bbox region with proper cropping and padding"""
|
| 121 |
try:
|
| 122 |
+
# Make square bbox with padding for better face detection
|
| 123 |
+
square_bbox = make_square_bbox_with_padding(bbox, img_width, img_height, padding=0.2)
|
| 124 |
+
x1, y1, x2, y2 = square_bbox
|
| 125 |
+
|
| 126 |
+
# Crop to square region
|
|
|
|
|
|
|
| 127 |
crop = image_bgr[y1:y2, x1:x2]
|
| 128 |
|
| 129 |
+
if crop.size == 0:
|
| 130 |
+
return None
|
| 131 |
+
|
| 132 |
+
# Resize to optimal size for InsightFace (640x640 max)
|
| 133 |
+
crop_h, crop_w = crop.shape[:2]
|
| 134 |
+
if max(crop_h, crop_w) > 640:
|
| 135 |
+
scale = 640 / max(crop_h, crop_w)
|
| 136 |
+
new_h = int(crop_h * scale)
|
| 137 |
+
new_w = int(crop_w * scale)
|
| 138 |
+
crop = cv2.resize(crop, (new_w, new_h), interpolation=cv2.INTER_LINEAR)
|
| 139 |
+
|
| 140 |
+
# Detect faces
|
| 141 |
faces = app.get(crop)
|
| 142 |
if len(faces) == 0:
|
| 143 |
return None
|
| 144 |
|
| 145 |
+
# Use the most confident face
|
| 146 |
face = max(faces, key=lambda x: x.det_score)
|
| 147 |
embedding = face.embedding
|
| 148 |
embedding_norm = embedding / np.linalg.norm(embedding)
|
|
|
|
| 166 |
|
| 167 |
for idx, image_pil in enumerate(images):
|
| 168 |
image_id = Path(image_paths[idx]).stem if image_paths[idx] else f'img_{idx:06d}'
|
| 169 |
+
img_width, img_height = image_pil.size
|
| 170 |
|
| 171 |
# Find corresponding SAM3D data
|
| 172 |
sam3d_row = sam3d_dataset.filter(lambda x: x['image_id'] == image_id).take(1)
|
|
|
|
| 192 |
kpts2d = human.get('keypoints_2d')
|
| 193 |
kpts3d = human.get('keypoints_3d')
|
| 194 |
|
| 195 |
+
# Check if this human has a valid, visible face
|
| 196 |
+
if not has_valid_face(kpts2d, kpts3d, img_width, img_height):
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 197 |
embeddings.append(None)
|
| 198 |
continue
|
| 199 |
|
| 200 |
+
if bbox is None:
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 201 |
embeddings.append(None)
|
| 202 |
continue
|
| 203 |
|
| 204 |
+
# Extract embedding from face region
|
| 205 |
+
embedding = extract_embedding(face_app, image_bgr, bbox, img_width, img_height)
|
| 206 |
embeddings.append(embedding)
|
| 207 |
|
| 208 |
results_list.append({
|