Pushing 1
Browse files- .gitattributes +1 -0
- .ipynb_checkpoints/__init__-checkpoint.py +0 -0
- .ipynb_checkpoints/modeling_feynmodel-checkpoint.py +1528 -0
- __init__.py +0 -0
- config.json +253 -0
- configuration_feynmodel.py +159 -0
- generation_config.json +11 -0
- model-00001-of-00003.safetensors +3 -0
- model-00002-of-00003.safetensors +3 -0
- model-00003-of-00003.safetensors +3 -0
- model.safetensors.index.json +705 -0
- modeling_feynmodel.py +1528 -0
- preprocessor_config.json +33 -0
- processing_florence2.py +1088 -0
- processor_config.json +6 -0
- special_tokens_map.json +30 -0
- tokenizer.json +3 -0
- tokenizer_config.json +2010 -0
.gitattributes
CHANGED
|
@@ -33,3 +33,4 @@ saved_model/**/* filter=lfs diff=lfs merge=lfs -text
|
|
| 33 |
*.zip filter=lfs diff=lfs merge=lfs -text
|
| 34 |
*.zst filter=lfs diff=lfs merge=lfs -text
|
| 35 |
*tfevents* filter=lfs diff=lfs merge=lfs -text
|
|
|
|
|
|
| 33 |
*.zip filter=lfs diff=lfs merge=lfs -text
|
| 34 |
*.zst filter=lfs diff=lfs merge=lfs -text
|
| 35 |
*tfevents* filter=lfs diff=lfs merge=lfs -text
|
| 36 |
+
tokenizer.json filter=lfs diff=lfs merge=lfs -text
|
.ipynb_checkpoints/__init__-checkpoint.py
ADDED
|
File without changes
|
.ipynb_checkpoints/modeling_feynmodel-checkpoint.py
ADDED
|
@@ -0,0 +1,1528 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
+
# modeling_fynmodel : Imed MAGROUNE / 2024 - 09
|
| 2 |
+
# original code from modeling_FeynModel
|
| 3 |
+
# add DaVit Vision Tower
|
| 4 |
+
#
|
| 5 |
+
# update generate forward function
|
| 6 |
+
#
|
| 7 |
+
# add lora adapters
|
| 8 |
+
#
|
| 9 |
+
# train on coco OD and vision reasoning
|
| 10 |
+
# train on ScenceQA
|
| 11 |
+
#
|
| 12 |
+
# todo add mamaba layer
|
| 13 |
+
#
|
| 14 |
+
# todo train on Arc-AGI
|
| 15 |
+
|
| 16 |
+
|
| 17 |
+
from transformers.modeling_utils import PreTrainedModel
|
| 18 |
+
from transformers.utils import (
|
| 19 |
+
ModelOutput,
|
| 20 |
+
add_start_docstrings,
|
| 21 |
+
add_start_docstrings_to_model_forward,
|
| 22 |
+
is_flash_attn_2_available,
|
| 23 |
+
logging,
|
| 24 |
+
replace_return_docstrings,
|
| 25 |
+
is_flash_attn_2_available,
|
| 26 |
+
is_flash_attn_greater_or_equal_2_10,
|
| 27 |
+
)
|
| 28 |
+
from transformers.activations import ACT2FN
|
| 29 |
+
from transformers.modeling_attn_mask_utils import (
|
| 30 |
+
_prepare_4d_attention_mask,
|
| 31 |
+
_prepare_4d_attention_mask_for_sdpa,
|
| 32 |
+
_prepare_4d_causal_attention_mask,
|
| 33 |
+
_prepare_4d_causal_attention_mask_for_sdpa,
|
| 34 |
+
)
|
| 35 |
+
from transformers.modeling_outputs import (
|
| 36 |
+
BaseModelOutput,
|
| 37 |
+
BaseModelOutputWithPastAndCrossAttentions,
|
| 38 |
+
Seq2SeqLMOutput,
|
| 39 |
+
Seq2SeqModelOutput,
|
| 40 |
+
)
|
| 41 |
+
|
| 42 |
+
from transformers.cache_utils import Cache, HybridCache
|
| 43 |
+
from transformers.modeling_outputs import (
|
| 44 |
+
BaseModelOutputWithPast,
|
| 45 |
+
CausalLMOutputWithPast,
|
| 46 |
+
SequenceClassifierOutputWithPast,
|
| 47 |
+
TokenClassifierOutput,
|
| 48 |
+
)
|
| 49 |
+
|
| 50 |
+
from typing import List, Optional, Tuple, Union
|
| 51 |
+
|
| 52 |
+
from transformers.models.gemma2.modeling_gemma2 import Gemma2Model, Gemma2ForCausalLM,Gemma2DecoderLayer,Gemma2RMSNorm
|
| 53 |
+
from configuration_feynmodel import FeynModelConfig,Florence2VisionConfig
|
| 54 |
+
|
| 55 |
+
from transformers import AutoProcessor, AutoTokenizer, AutoModelForCausalLM
|
| 56 |
+
import json
|
| 57 |
+
import math
|
| 58 |
+
import torch
|
| 59 |
+
from torch import nn
|
| 60 |
+
import torch.nn.functional as F
|
| 61 |
+
import logging
|
| 62 |
+
|
| 63 |
+
from transformers.utils import (
|
| 64 |
+
ModelOutput,
|
| 65 |
+
add_start_docstrings,
|
| 66 |
+
add_start_docstrings_to_model_forward,
|
| 67 |
+
is_flash_attn_2_available,
|
| 68 |
+
logging,
|
| 69 |
+
replace_return_docstrings,
|
| 70 |
+
is_flash_attn_2_available,
|
| 71 |
+
is_flash_attn_greater_or_equal_2_10,
|
| 72 |
+
)
|
| 73 |
+
|
| 74 |
+
from transformers.modeling_utils import PreTrainedModel
|
| 75 |
+
|
| 76 |
+
from collections import OrderedDict
|
| 77 |
+
from einops import rearrange
|
| 78 |
+
from timm.models.layers import DropPath, trunc_normal_
|
| 79 |
+
|
| 80 |
+
logger = logging.get_logger(__name__)
|
| 81 |
+
|
| 82 |
+
class MySequential(nn.Sequential):
|
| 83 |
+
def forward(self, *inputs):
|
| 84 |
+
for module in self._modules.values():
|
| 85 |
+
if type(inputs) == tuple:
|
| 86 |
+
inputs = module(*inputs)
|
| 87 |
+
else:
|
| 88 |
+
inputs = module(inputs)
|
| 89 |
+
return inputs
|
| 90 |
+
|
| 91 |
+
|
| 92 |
+
class PreNorm(nn.Module):
|
| 93 |
+
def __init__(self, norm, fn, drop_path=None):
|
| 94 |
+
super().__init__()
|
| 95 |
+
self.norm = norm
|
| 96 |
+
self.fn = fn
|
| 97 |
+
self.drop_path = drop_path
|
| 98 |
+
|
| 99 |
+
def forward(self, x, *args, **kwargs):
|
| 100 |
+
shortcut = x
|
| 101 |
+
if self.norm != None:
|
| 102 |
+
x, size = self.fn(self.norm(x), *args, **kwargs)
|
| 103 |
+
else:
|
| 104 |
+
x, size = self.fn(x, *args, **kwargs)
|
| 105 |
+
|
| 106 |
+
if self.drop_path:
|
| 107 |
+
x = self.drop_path(x)
|
| 108 |
+
|
| 109 |
+
x = shortcut + x
|
| 110 |
+
|
| 111 |
+
return x, size
|
| 112 |
+
|
| 113 |
+
|
| 114 |
+
class Mlp(nn.Module):
|
| 115 |
+
def __init__(
|
| 116 |
+
self,
|
| 117 |
+
in_features,
|
| 118 |
+
hidden_features=None,
|
| 119 |
+
out_features=None,
|
| 120 |
+
act_layer=nn.GELU,
|
| 121 |
+
):
|
| 122 |
+
super().__init__()
|
| 123 |
+
out_features = out_features or in_features
|
| 124 |
+
hidden_features = hidden_features or in_features
|
| 125 |
+
self.net = nn.Sequential(OrderedDict([
|
| 126 |
+
("fc1", nn.Linear(in_features, hidden_features)),
|
| 127 |
+
("act", act_layer()),
|
| 128 |
+
("fc2", nn.Linear(hidden_features, out_features))
|
| 129 |
+
]))
|
| 130 |
+
|
| 131 |
+
def forward(self, x, size):
|
| 132 |
+
return self.net(x), size
|
| 133 |
+
|
| 134 |
+
|
| 135 |
+
class DepthWiseConv2d(nn.Module):
|
| 136 |
+
def __init__(
|
| 137 |
+
self,
|
| 138 |
+
dim_in,
|
| 139 |
+
kernel_size,
|
| 140 |
+
padding,
|
| 141 |
+
stride,
|
| 142 |
+
bias=True,
|
| 143 |
+
):
|
| 144 |
+
super().__init__()
|
| 145 |
+
self.dw = nn.Conv2d(
|
| 146 |
+
dim_in, dim_in,
|
| 147 |
+
kernel_size=kernel_size,
|
| 148 |
+
padding=padding,
|
| 149 |
+
groups=dim_in,
|
| 150 |
+
stride=stride,
|
| 151 |
+
bias=bias
|
| 152 |
+
)
|
| 153 |
+
|
| 154 |
+
def forward(self, x, size):
|
| 155 |
+
B, N, C = x.shape
|
| 156 |
+
H, W = size
|
| 157 |
+
assert N == H * W
|
| 158 |
+
|
| 159 |
+
x = self.dw(x.transpose(1, 2).view(B, C, H, W))
|
| 160 |
+
size = (x.size(-2), x.size(-1))
|
| 161 |
+
x = x.flatten(2).transpose(1, 2)
|
| 162 |
+
return x, size
|
| 163 |
+
|
| 164 |
+
|
| 165 |
+
class ConvEmbed(nn.Module):
|
| 166 |
+
""" Image to Patch Embedding
|
| 167 |
+
"""
|
| 168 |
+
|
| 169 |
+
def __init__(
|
| 170 |
+
self,
|
| 171 |
+
patch_size=7,
|
| 172 |
+
in_chans=3,
|
| 173 |
+
embed_dim=64,
|
| 174 |
+
stride=4,
|
| 175 |
+
padding=2,
|
| 176 |
+
norm_layer=None,
|
| 177 |
+
pre_norm=True
|
| 178 |
+
):
|
| 179 |
+
super().__init__()
|
| 180 |
+
self.patch_size = patch_size
|
| 181 |
+
|
| 182 |
+
self.proj = nn.Conv2d(
|
| 183 |
+
in_chans, embed_dim,
|
| 184 |
+
kernel_size=patch_size,
|
| 185 |
+
stride=stride,
|
| 186 |
+
padding=padding
|
| 187 |
+
)
|
| 188 |
+
|
| 189 |
+
dim_norm = in_chans if pre_norm else embed_dim
|
| 190 |
+
self.norm = norm_layer(dim_norm) if norm_layer else None
|
| 191 |
+
|
| 192 |
+
self.pre_norm = pre_norm
|
| 193 |
+
|
| 194 |
+
def forward(self, x, size):
|
| 195 |
+
H, W = size
|
| 196 |
+
if len(x.size()) == 3:
|
| 197 |
+
if self.norm and self.pre_norm:
|
| 198 |
+
x = self.norm(x)
|
| 199 |
+
x = rearrange(
|
| 200 |
+
x, 'b (h w) c -> b c h w',
|
| 201 |
+
h=H, w=W
|
| 202 |
+
)
|
| 203 |
+
|
| 204 |
+
x = self.proj(x)
|
| 205 |
+
|
| 206 |
+
_, _, H, W = x.shape
|
| 207 |
+
x = rearrange(x, 'b c h w -> b (h w) c')
|
| 208 |
+
if self.norm and not self.pre_norm:
|
| 209 |
+
x = self.norm(x)
|
| 210 |
+
|
| 211 |
+
return x, (H, W)
|
| 212 |
+
|
| 213 |
+
|
| 214 |
+
class ChannelAttention(nn.Module):
|
| 215 |
+
|
| 216 |
+
def __init__(self, dim, groups=8, qkv_bias=True):
|
| 217 |
+
super().__init__()
|
| 218 |
+
|
| 219 |
+
self.groups = groups
|
| 220 |
+
self.qkv = nn.Linear(dim, dim * 3, bias=qkv_bias)
|
| 221 |
+
self.proj = nn.Linear(dim, dim)
|
| 222 |
+
|
| 223 |
+
def forward(self, x, size):
|
| 224 |
+
B, N, C = x.shape
|
| 225 |
+
|
| 226 |
+
qkv = self.qkv(x).reshape(B, N, 3, self.groups, C // self.groups).permute(2, 0, 3, 1, 4)
|
| 227 |
+
q, k, v = qkv[0], qkv[1], qkv[2]
|
| 228 |
+
|
| 229 |
+
q = q * (float(N) ** -0.5)
|
| 230 |
+
attention = q.transpose(-1, -2) @ k
|
| 231 |
+
attention = attention.softmax(dim=-1)
|
| 232 |
+
x = (attention @ v.transpose(-1, -2)).transpose(-1, -2)
|
| 233 |
+
x = x.transpose(1, 2).reshape(B, N, C)
|
| 234 |
+
x = self.proj(x)
|
| 235 |
+
return x, size
|
| 236 |
+
|
| 237 |
+
|
| 238 |
+
class ChannelBlock(nn.Module):
|
| 239 |
+
|
| 240 |
+
def __init__(self, dim, groups, mlp_ratio=4., qkv_bias=True,
|
| 241 |
+
drop_path_rate=0., act_layer=nn.GELU, norm_layer=nn.LayerNorm,
|
| 242 |
+
conv_at_attn=True, conv_at_ffn=True):
|
| 243 |
+
super().__init__()
|
| 244 |
+
|
| 245 |
+
drop_path = DropPath(drop_path_rate) if drop_path_rate > 0. else nn.Identity()
|
| 246 |
+
|
| 247 |
+
self.conv1 = PreNorm(None, DepthWiseConv2d(dim, 3, 1, 1)) if conv_at_attn else None
|
| 248 |
+
self.channel_attn = PreNorm(
|
| 249 |
+
norm_layer(dim),
|
| 250 |
+
ChannelAttention(dim, groups=groups, qkv_bias=qkv_bias),
|
| 251 |
+
drop_path
|
| 252 |
+
)
|
| 253 |
+
self.conv2 = PreNorm(None, DepthWiseConv2d(dim, 3, 1, 1)) if conv_at_ffn else None
|
| 254 |
+
self.ffn = PreNorm(
|
| 255 |
+
norm_layer(dim),
|
| 256 |
+
Mlp(in_features=dim, hidden_features=int(dim*mlp_ratio), act_layer=act_layer),
|
| 257 |
+
drop_path
|
| 258 |
+
)
|
| 259 |
+
|
| 260 |
+
def forward(self, x, size):
|
| 261 |
+
if self.conv1:
|
| 262 |
+
x, size = self.conv1(x, size)
|
| 263 |
+
x, size = self.channel_attn(x, size)
|
| 264 |
+
|
| 265 |
+
if self.conv2:
|
| 266 |
+
x, size = self.conv2(x, size)
|
| 267 |
+
x, size = self.ffn(x, size)
|
| 268 |
+
|
| 269 |
+
return x, size
|
| 270 |
+
|
| 271 |
+
|
| 272 |
+
def window_partition(x, window_size: int):
|
| 273 |
+
B, H, W, C = x.shape
|
| 274 |
+
x = x.view(B, H // window_size, window_size, W // window_size, window_size, C)
|
| 275 |
+
windows = x.permute(0, 1, 3, 2, 4, 5).contiguous().view(-1, window_size, window_size, C)
|
| 276 |
+
return windows
|
| 277 |
+
|
| 278 |
+
|
| 279 |
+
def window_reverse(windows, batch_size: int, window_size: int, H: int, W: int):
|
| 280 |
+
B = batch_size
|
| 281 |
+
# this will cause onnx conversion failed for dynamic axis, because treated as constant
|
| 282 |
+
# int(windows.shape[0] / (H * W / window_size / window_size))
|
| 283 |
+
x = windows.view(B, H // window_size, W // window_size, window_size, window_size, -1)
|
| 284 |
+
x = x.permute(0, 1, 3, 2, 4, 5).contiguous().view(B, H, W, -1)
|
| 285 |
+
return x
|
| 286 |
+
|
| 287 |
+
|
| 288 |
+
class WindowAttention(nn.Module):
|
| 289 |
+
def __init__(self, dim, num_heads, window_size, qkv_bias=True):
|
| 290 |
+
|
| 291 |
+
super().__init__()
|
| 292 |
+
self.dim = dim
|
| 293 |
+
self.window_size = window_size
|
| 294 |
+
self.num_heads = num_heads
|
| 295 |
+
head_dim = dim // num_heads
|
| 296 |
+
self.scale = float(head_dim) ** -0.5
|
| 297 |
+
|
| 298 |
+
self.qkv = nn.Linear(dim, dim * 3, bias=qkv_bias)
|
| 299 |
+
self.proj = nn.Linear(dim, dim)
|
| 300 |
+
|
| 301 |
+
self.softmax = nn.Softmax(dim=-1)
|
| 302 |
+
|
| 303 |
+
def forward(self, x, size):
|
| 304 |
+
|
| 305 |
+
H, W = size
|
| 306 |
+
B, L, C = x.shape
|
| 307 |
+
assert L == H * W, "input feature has wrong size"
|
| 308 |
+
|
| 309 |
+
x = x.view(B, H, W, C)
|
| 310 |
+
|
| 311 |
+
pad_l = pad_t = 0
|
| 312 |
+
pad_r = (self.window_size - W % self.window_size) % self.window_size
|
| 313 |
+
pad_b = (self.window_size - H % self.window_size) % self.window_size
|
| 314 |
+
x = F.pad(x, (0, 0, pad_l, pad_r, pad_t, pad_b))
|
| 315 |
+
_, Hp, Wp, _ = x.shape
|
| 316 |
+
|
| 317 |
+
x = window_partition(x, self.window_size)
|
| 318 |
+
x = x.view(-1, self.window_size * self.window_size, C)
|
| 319 |
+
|
| 320 |
+
# W-MSA/SW-MSA
|
| 321 |
+
# attn_windows = self.attn(x_windows)
|
| 322 |
+
|
| 323 |
+
B_, N, C = x.shape
|
| 324 |
+
qkv = self.qkv(x).reshape(B_, N, 3, self.num_heads, C // self.num_heads).permute(2, 0, 3, 1, 4)
|
| 325 |
+
q, k, v = qkv[0], qkv[1], qkv[2]
|
| 326 |
+
|
| 327 |
+
q = q * self.scale
|
| 328 |
+
attn = (q @ k.transpose(-2, -1))
|
| 329 |
+
attn = self.softmax(attn)
|
| 330 |
+
|
| 331 |
+
x = (attn @ v).transpose(1, 2).reshape(B_, N, C)
|
| 332 |
+
x = self.proj(x)
|
| 333 |
+
|
| 334 |
+
# merge windows
|
| 335 |
+
x = x.view(
|
| 336 |
+
-1, self.window_size, self.window_size, C
|
| 337 |
+
)
|
| 338 |
+
x = window_reverse(x, B, self.window_size, Hp, Wp)
|
| 339 |
+
|
| 340 |
+
if pad_r > 0 or pad_b > 0:
|
| 341 |
+
x = x[:, :H, :W, :].contiguous()
|
| 342 |
+
|
| 343 |
+
x = x.view(B, H * W, C)
|
| 344 |
+
|
| 345 |
+
return x, size
|
| 346 |
+
|
| 347 |
+
|
| 348 |
+
class SpatialBlock(nn.Module):
|
| 349 |
+
|
| 350 |
+
def __init__(self, dim, num_heads, window_size,
|
| 351 |
+
mlp_ratio=4., qkv_bias=True, drop_path_rate=0., act_layer=nn.GELU,
|
| 352 |
+
norm_layer=nn.LayerNorm, conv_at_attn=True, conv_at_ffn=True):
|
| 353 |
+
super().__init__()
|
| 354 |
+
|
| 355 |
+
drop_path = DropPath(drop_path_rate) if drop_path_rate > 0. else nn.Identity()
|
| 356 |
+
|
| 357 |
+
self.conv1 = PreNorm(None, DepthWiseConv2d(dim, 3, 1, 1)) if conv_at_attn else None
|
| 358 |
+
self.window_attn = PreNorm(
|
| 359 |
+
norm_layer(dim),
|
| 360 |
+
WindowAttention(dim, num_heads, window_size, qkv_bias=qkv_bias),
|
| 361 |
+
drop_path
|
| 362 |
+
)
|
| 363 |
+
self.conv2 = PreNorm(None, DepthWiseConv2d(dim, 3, 1, 1)) if conv_at_ffn else None
|
| 364 |
+
self.ffn = PreNorm(
|
| 365 |
+
norm_layer(dim),
|
| 366 |
+
Mlp(in_features=dim, hidden_features=int(dim*mlp_ratio), act_layer=act_layer),
|
| 367 |
+
drop_path
|
| 368 |
+
)
|
| 369 |
+
|
| 370 |
+
def forward(self, x, size):
|
| 371 |
+
if self.conv1:
|
| 372 |
+
x, size = self.conv1(x, size)
|
| 373 |
+
x, size = self.window_attn(x, size)
|
| 374 |
+
|
| 375 |
+
if self.conv2:
|
| 376 |
+
x, size = self.conv2(x, size)
|
| 377 |
+
x, size = self.ffn(x, size)
|
| 378 |
+
return x, size
|
| 379 |
+
|
| 380 |
+
|
| 381 |
+
class DaViT(nn.Module):
|
| 382 |
+
""" DaViT: Dual-Attention Transformer
|
| 383 |
+
|
| 384 |
+
Args:
|
| 385 |
+
in_chans (int): Number of input image channels. Default: 3.
|
| 386 |
+
num_classes (int): Number of classes for classification head. Default: 1000.
|
| 387 |
+
patch_size (tuple(int)): Patch size of convolution in different stages. Default: (7, 2, 2, 2).
|
| 388 |
+
patch_stride (tuple(int)): Patch stride of convolution in different stages. Default: (4, 2, 2, 2).
|
| 389 |
+
patch_padding (tuple(int)): Patch padding of convolution in different stages. Default: (3, 0, 0, 0).
|
| 390 |
+
patch_prenorm (tuple(bool)): If True, perform norm before convlution layer. Default: (True, False, False, False).
|
| 391 |
+
embed_dims (tuple(int)): Patch embedding dimension in different stages. Default: (64, 128, 192, 256).
|
| 392 |
+
num_heads (tuple(int)): Number of spatial attention heads in different stages. Default: (4, 8, 12, 16).
|
| 393 |
+
num_groups (tuple(int)): Number of channel groups in different stages. Default: (4, 8, 12, 16).
|
| 394 |
+
window_size (int): Window size. Default: 7.
|
| 395 |
+
mlp_ratio (float): Ratio of mlp hidden dim to embedding dim. Default: 4.
|
| 396 |
+
qkv_bias (bool): If True, add a learnable bias to query, key, value. Default: True.
|
| 397 |
+
drop_path_rate (float): Stochastic depth rate. Default: 0.1.
|
| 398 |
+
norm_layer (nn.Module): Normalization layer. Default: nn.LayerNorm.
|
| 399 |
+
enable_checkpoint (bool): If True, enable checkpointing. Default: False.
|
| 400 |
+
conv_at_attn (bool): If True, performe depthwise convolution before attention layer. Default: True.
|
| 401 |
+
conv_at_ffn (bool): If True, performe depthwise convolution before ffn layer. Default: True.
|
| 402 |
+
"""
|
| 403 |
+
|
| 404 |
+
def __init__(
|
| 405 |
+
self,
|
| 406 |
+
in_chans=3,
|
| 407 |
+
num_classes=1000,
|
| 408 |
+
depths=(1, 1, 3, 1),
|
| 409 |
+
patch_size=(7, 2, 2, 2),
|
| 410 |
+
patch_stride=(4, 2, 2, 2),
|
| 411 |
+
patch_padding=(3, 0, 0, 0),
|
| 412 |
+
patch_prenorm=(False, False, False, False),
|
| 413 |
+
embed_dims=(64, 128, 192, 256),
|
| 414 |
+
num_heads=(3, 6, 12, 24),
|
| 415 |
+
num_groups=(3, 6, 12, 24),
|
| 416 |
+
window_size=7,
|
| 417 |
+
mlp_ratio=4.,
|
| 418 |
+
qkv_bias=True,
|
| 419 |
+
drop_path_rate=0.1,
|
| 420 |
+
norm_layer=nn.LayerNorm,
|
| 421 |
+
enable_checkpoint=False,
|
| 422 |
+
conv_at_attn=True,
|
| 423 |
+
conv_at_ffn=True,
|
| 424 |
+
):
|
| 425 |
+
super().__init__()
|
| 426 |
+
|
| 427 |
+
self.num_classes = num_classes
|
| 428 |
+
self.embed_dims = embed_dims
|
| 429 |
+
self.num_heads = num_heads
|
| 430 |
+
self.num_groups = num_groups
|
| 431 |
+
self.num_stages = len(self.embed_dims)
|
| 432 |
+
self.enable_checkpoint = enable_checkpoint
|
| 433 |
+
assert self.num_stages == len(self.num_heads) == len(self.num_groups)
|
| 434 |
+
|
| 435 |
+
num_stages = len(embed_dims)
|
| 436 |
+
dpr = [x.item() for x in torch.linspace(0, drop_path_rate, sum(depths)*2)]
|
| 437 |
+
|
| 438 |
+
depth_offset = 0
|
| 439 |
+
convs = []
|
| 440 |
+
blocks = []
|
| 441 |
+
for i in range(num_stages):
|
| 442 |
+
conv_embed = ConvEmbed(
|
| 443 |
+
patch_size=patch_size[i],
|
| 444 |
+
stride=patch_stride[i],
|
| 445 |
+
padding=patch_padding[i],
|
| 446 |
+
in_chans=in_chans if i == 0 else self.embed_dims[i - 1],
|
| 447 |
+
embed_dim=self.embed_dims[i],
|
| 448 |
+
norm_layer=norm_layer,
|
| 449 |
+
pre_norm=patch_prenorm[i]
|
| 450 |
+
)
|
| 451 |
+
convs.append(conv_embed)
|
| 452 |
+
|
| 453 |
+
block = MySequential(
|
| 454 |
+
*[
|
| 455 |
+
MySequential(OrderedDict([
|
| 456 |
+
(
|
| 457 |
+
'spatial_block', SpatialBlock(
|
| 458 |
+
embed_dims[i],
|
| 459 |
+
num_heads[i],
|
| 460 |
+
window_size,
|
| 461 |
+
drop_path_rate=dpr[depth_offset+j*2],
|
| 462 |
+
qkv_bias=qkv_bias,
|
| 463 |
+
mlp_ratio=mlp_ratio,
|
| 464 |
+
conv_at_attn=conv_at_attn,
|
| 465 |
+
conv_at_ffn=conv_at_ffn,
|
| 466 |
+
)
|
| 467 |
+
),
|
| 468 |
+
(
|
| 469 |
+
'channel_block', ChannelBlock(
|
| 470 |
+
embed_dims[i],
|
| 471 |
+
num_groups[i],
|
| 472 |
+
drop_path_rate=dpr[depth_offset+j*2+1],
|
| 473 |
+
qkv_bias=qkv_bias,
|
| 474 |
+
mlp_ratio=mlp_ratio,
|
| 475 |
+
conv_at_attn=conv_at_attn,
|
| 476 |
+
conv_at_ffn=conv_at_ffn,
|
| 477 |
+
)
|
| 478 |
+
)
|
| 479 |
+
])) for j in range(depths[i])
|
| 480 |
+
]
|
| 481 |
+
)
|
| 482 |
+
blocks.append(block)
|
| 483 |
+
depth_offset += depths[i]*2
|
| 484 |
+
|
| 485 |
+
self.convs = nn.ModuleList(convs)
|
| 486 |
+
self.blocks = nn.ModuleList(blocks)
|
| 487 |
+
|
| 488 |
+
self.norms = norm_layer(self.embed_dims[-1])
|
| 489 |
+
self.avgpool = nn.AdaptiveAvgPool1d(1)
|
| 490 |
+
self.head = nn.Linear(self.embed_dims[-1], num_classes) if num_classes > 0 else nn.Identity()
|
| 491 |
+
|
| 492 |
+
self.apply(self._init_weights)
|
| 493 |
+
|
| 494 |
+
@property
|
| 495 |
+
def dim_out(self):
|
| 496 |
+
return self.embed_dims[-1]
|
| 497 |
+
|
| 498 |
+
def _init_weights(self, m):
|
| 499 |
+
if isinstance(m, nn.Linear):
|
| 500 |
+
trunc_normal_(m.weight, std=0.02)
|
| 501 |
+
if m.bias is not None:
|
| 502 |
+
nn.init.constant_(m.bias, 0)
|
| 503 |
+
elif isinstance(m, nn.Conv2d):
|
| 504 |
+
nn.init.normal_(m.weight, std=0.02)
|
| 505 |
+
for name, _ in m.named_parameters():
|
| 506 |
+
if name in ['bias']:
|
| 507 |
+
nn.init.constant_(m.bias, 0)
|
| 508 |
+
elif isinstance(m, nn.LayerNorm):
|
| 509 |
+
nn.init.constant_(m.weight, 1.0)
|
| 510 |
+
nn.init.constant_(m.bias, 0)
|
| 511 |
+
elif isinstance(m, nn.BatchNorm2d):
|
| 512 |
+
nn.init.constant_(m.weight, 1.0)
|
| 513 |
+
nn.init.constant_(m.bias, 0)
|
| 514 |
+
|
| 515 |
+
def forward_features_unpool(self, x):
|
| 516 |
+
"""
|
| 517 |
+
forward until avg pooling
|
| 518 |
+
Args:
|
| 519 |
+
x (_type_): input image tensor
|
| 520 |
+
"""
|
| 521 |
+
input_size = (x.size(2), x.size(3))
|
| 522 |
+
for conv, block in zip(self.convs, self.blocks):
|
| 523 |
+
x, input_size = conv(x, input_size)
|
| 524 |
+
if self.enable_checkpoint:
|
| 525 |
+
x, input_size = checkpoint.checkpoint(block, x, input_size)
|
| 526 |
+
else:
|
| 527 |
+
x, input_size = block(x, input_size)
|
| 528 |
+
return x
|
| 529 |
+
|
| 530 |
+
def forward_features(self, x):
|
| 531 |
+
x = self.forward_features_unpool(x)
|
| 532 |
+
|
| 533 |
+
# (batch_size, num_tokens, token_dim)
|
| 534 |
+
x = self.avgpool(x.transpose(1, 2))
|
| 535 |
+
# (batch_size, 1, num_tokens)
|
| 536 |
+
x = torch.flatten(x, 1)
|
| 537 |
+
x = self.norms(x)
|
| 538 |
+
|
| 539 |
+
return x
|
| 540 |
+
|
| 541 |
+
def forward(self, x):
|
| 542 |
+
x = self.forward_features(x)
|
| 543 |
+
x = self.head(x)
|
| 544 |
+
return x
|
| 545 |
+
|
| 546 |
+
@classmethod
|
| 547 |
+
def from_config(cls, config):
|
| 548 |
+
return cls(
|
| 549 |
+
depths=config.depths,
|
| 550 |
+
embed_dims=config.dim_embed,
|
| 551 |
+
num_heads=config.num_heads,
|
| 552 |
+
num_groups=config.num_groups,
|
| 553 |
+
patch_size=config.patch_size,
|
| 554 |
+
patch_stride=config.patch_stride,
|
| 555 |
+
patch_padding=config.patch_padding,
|
| 556 |
+
patch_prenorm=config.patch_prenorm,
|
| 557 |
+
drop_path_rate=config.drop_path_rate,
|
| 558 |
+
window_size=config.window_size,
|
| 559 |
+
)
|
| 560 |
+
|
| 561 |
+
|
| 562 |
+
|
| 563 |
+
|
| 564 |
+
_CONFIG_FOR_DOC = "FeynModelConfig"
|
| 565 |
+
|
| 566 |
+
FEYNMODEL_START_DOCSTRING = r"""
|
| 567 |
+
This model inherits from [`PreTrainedModel`]. Check the superclass documentation for the generic methods the
|
| 568 |
+
library implements for all its model (such as downloading or saving, resizing the input embeddings, pruning heads
|
| 569 |
+
etc.)
|
| 570 |
+
|
| 571 |
+
This model is also a PyTorch [torch.nn.Module](https://pytorch.org/docs/stable/nn.html#torch.nn.Module) subclass.
|
| 572 |
+
Use it as a regular PyTorch Module and refer to the PyTorch documentation for all matter related to general usage
|
| 573 |
+
and behavior.
|
| 574 |
+
|
| 575 |
+
Parameters:
|
| 576 |
+
config ([`FeynModelConfig`]):
|
| 577 |
+
Model configuration class with all the parameters of the model. Initializing with a config file does not
|
| 578 |
+
load the weights associated with the model, only the configuration. Check out the
|
| 579 |
+
[`~PreTrainedModel.from_pretrained`] method to load the model weights.
|
| 580 |
+
"""
|
| 581 |
+
FEYNMODEL_INPUTS_DOCSTRING = r"""
|
| 582 |
+
Args:
|
| 583 |
+
input_ids (`torch.LongTensor` of shape `(batch_size, sequence_length)`):
|
| 584 |
+
Indices of input sequence tokens in the vocabulary. Padding will be ignored by default should you provide
|
| 585 |
+
it.
|
| 586 |
+
|
| 587 |
+
Indices can be obtained using [`AutoTokenizer`]. See [`PreTrainedTokenizer.encode`] and
|
| 588 |
+
[`PreTrainedTokenizer.__call__`] for details.
|
| 589 |
+
|
| 590 |
+
[What are input IDs?](../glossary#input-ids)
|
| 591 |
+
attention_mask (`torch.Tensor` of shape `(batch_size, sequence_length)`, *optional*):
|
| 592 |
+
Mask to avoid performing attention on padding token indices. Mask values selected in `[0, 1]`:
|
| 593 |
+
|
| 594 |
+
- 1 for tokens that are **not masked**,
|
| 595 |
+
- 0 for tokens that are **masked**.
|
| 596 |
+
|
| 597 |
+
[What are attention masks?](../glossary#attention-mask)
|
| 598 |
+
|
| 599 |
+
Indices can be obtained using [`AutoTokenizer`]. See [`PreTrainedTokenizer.encode`] and
|
| 600 |
+
[`PreTrainedTokenizer.__call__`] for details.
|
| 601 |
+
|
| 602 |
+
If `past_key_values` is used, optionally only the last `input_ids` have to be input (see
|
| 603 |
+
`past_key_values`).
|
| 604 |
+
|
| 605 |
+
If you want to change padding behavior, you should read [`modeling_opt._prepare_decoder_attention_mask`]
|
| 606 |
+
and modify to your needs. See diagram 1 in [the paper](https://arxiv.org/abs/1910.13461) for more
|
| 607 |
+
information on the default strategy.
|
| 608 |
+
|
| 609 |
+
- 1 indicates the head is **not masked**,
|
| 610 |
+
- 0 indicates the head is **masked**.
|
| 611 |
+
position_ids (`torch.LongTensor` of shape `(batch_size, sequence_length)`, *optional*):
|
| 612 |
+
Indices of positions of each input sequence tokens in the position embeddings. Selected in the range `[0,
|
| 613 |
+
config.n_positions - 1]`.
|
| 614 |
+
|
| 615 |
+
[What are position IDs?](../glossary#position-ids)
|
| 616 |
+
past_key_values (`Cache` or `tuple(tuple(torch.FloatTensor))`, *optional*):
|
| 617 |
+
Pre-computed hidden-states (key and values in the self-attention blocks and in the cross-attention
|
| 618 |
+
blocks) that can be used to speed up sequential decoding. This typically consists in the `past_key_values`
|
| 619 |
+
returned by the model at a previous stage of decoding, when `use_cache=True` or `config.use_cache=True`.
|
| 620 |
+
|
| 621 |
+
Two formats are allowed:
|
| 622 |
+
- a [`~cache_utils.Cache`] instance;
|
| 623 |
+
- Tuple of `tuple(torch.FloatTensor)` of length `config.n_layers`, with each tuple having 2 tensors of
|
| 624 |
+
shape `(batch_size, num_heads, sequence_length, embed_size_per_head)`). This is also known as the legacy
|
| 625 |
+
cache format.
|
| 626 |
+
|
| 627 |
+
The model will output the same cache format that is fed as input. If no `past_key_values` are passed, the
|
| 628 |
+
legacy cache format will be returned.
|
| 629 |
+
|
| 630 |
+
If `past_key_values` are used, the user can optionally input only the last `input_ids` (those that don't
|
| 631 |
+
have their past key value states given to this model) of shape `(batch_size, 1)` instead of all `input_ids`
|
| 632 |
+
of shape `(batch_size, sequence_length)`.
|
| 633 |
+
inputs_embeds (`torch.FloatTensor` of shape `(batch_size, sequence_length, hidden_size)`, *optional*):
|
| 634 |
+
Optionally, instead of passing `input_ids` you can choose to directly pass an embedded representation. This
|
| 635 |
+
is useful if you want more control over how to convert `input_ids` indices into associated vectors than the
|
| 636 |
+
model's internal embedding lookup matrix.
|
| 637 |
+
use_cache (`bool`, *optional*):
|
| 638 |
+
If set to `True`, `past_key_values` key value states are returned and can be used to speed up decoding (see
|
| 639 |
+
`past_key_values`).
|
| 640 |
+
output_attentions (`bool`, *optional*):
|
| 641 |
+
Whether or not to return the attentions tensors of all attention layers. See `attentions` under returned
|
| 642 |
+
tensors for more detail.
|
| 643 |
+
output_hidden_states (`bool`, *optional*):
|
| 644 |
+
Whether or not to return the hidden states of all layers. See `hidden_states` under returned tensors for
|
| 645 |
+
more detail.
|
| 646 |
+
return_dict (`bool`, *optional*):
|
| 647 |
+
Whether or not to return a [`~utils.ModelOutput`] instead of a plain tuple.
|
| 648 |
+
cache_position (`torch.LongTensor` of shape `(sequence_length)`, *optional*):
|
| 649 |
+
Indices depicting the position of the input sequence tokens in the sequence. Contrarily to `position_ids`,
|
| 650 |
+
this tensor is not affected by padding. It is used to update the cache in the correct position and to infer
|
| 651 |
+
the complete sequence length.
|
| 652 |
+
"""
|
| 653 |
+
|
| 654 |
+
# Copied from transformers.models.llama.modeling_llama._prepare_4d_causal_attention_mask_with_cache_position
|
| 655 |
+
def _prepare_4d_causal_attention_mask_with_cache_position(
|
| 656 |
+
attention_mask: torch.Tensor,
|
| 657 |
+
sequence_length: int,
|
| 658 |
+
target_length: int,
|
| 659 |
+
dtype: torch.dtype,
|
| 660 |
+
device: torch.device,
|
| 661 |
+
min_dtype: float,
|
| 662 |
+
cache_position: torch.Tensor,
|
| 663 |
+
batch_size: int,
|
| 664 |
+
):
|
| 665 |
+
|
| 666 |
+
#print(f" +++++++++ prepare 4K +++++++++++++++ rec {attention_mask.size()} sequence_length {sequence_length}")
|
| 667 |
+
if attention_mask is not None and attention_mask.dim() == 4:
|
| 668 |
+
# In this case we assume that the mask comes already in inverted form and requires no inversion or slicing.
|
| 669 |
+
#print("+++++++++++++++++ return it")
|
| 670 |
+
#causal_mask = attention_mask
|
| 671 |
+
# In this case we assume that the mask comes already in inverted form.
|
| 672 |
+
causal_mask = attention_mask[:, :, -sequence_length:, :]
|
| 673 |
+
#print(f"+++++++++++++++++ truncated causal_mask to last {sequence_length} elements, size: {causal_mask.size()}")
|
| 674 |
+
#print(f"+++++++++++++++++ return it causal_mask {causal_mask.size()} !!!!!!!!! attention_mask {attention_mask.size()}")
|
| 675 |
+
else:
|
| 676 |
+
#print("+++++++++++++++++++++ else +++++++++++++++++")
|
| 677 |
+
causal_mask = torch.full((sequence_length, target_length), fill_value=min_dtype, dtype=dtype, device=device)
|
| 678 |
+
#print(f"++++++++++++++++ causal_mask {causal_mask.size()} ++++++++++++++++++ sequence_length = {sequence_length} ")
|
| 679 |
+
if sequence_length != 1:
|
| 680 |
+
causal_mask = torch.triu(causal_mask, diagonal=1)
|
| 681 |
+
#print(f"++++++++++++++++++ causal_mask = torch.triu ++++++++++ {causal_mask.size()} ")
|
| 682 |
+
causal_mask *= torch.arange(target_length, device=device) > cache_position.reshape(-1, 1)
|
| 683 |
+
causal_mask = causal_mask[None, None, :, :].expand(batch_size, 1, -1, -1)
|
| 684 |
+
#print(f"+++++++++++++++++++++ avant if attention_mask is not None:, causal_mask={causal_mask.size()}")
|
| 685 |
+
if attention_mask is not None:
|
| 686 |
+
#print(" +++++++++++++ attention_mask is None++++++++++++")
|
| 687 |
+
causal_mask = causal_mask.clone() # copy to contiguous memory for in-place edit
|
| 688 |
+
mask_length = attention_mask.shape[-1]
|
| 689 |
+
padding_mask = causal_mask[:, :, :, :mask_length] + attention_mask[:, None, None, :]
|
| 690 |
+
padding_mask = padding_mask == 0
|
| 691 |
+
causal_mask[:, :, :, :mask_length] = causal_mask[:, :, :, :mask_length].masked_fill(
|
| 692 |
+
padding_mask, min_dtype
|
| 693 |
+
)
|
| 694 |
+
#print(f"+++++++++++++++++++ 4K returning causal_mask {causal_mask.size()} +++++++++++++++++++")
|
| 695 |
+
|
| 696 |
+
return causal_mask
|
| 697 |
+
|
| 698 |
+
class LearnedAbsolutePositionEmbedding2D(nn.Module):
|
| 699 |
+
"""
|
| 700 |
+
This module learns positional embeddings up to a fixed maximum size.
|
| 701 |
+
"""
|
| 702 |
+
|
| 703 |
+
def __init__(self, embedding_dim=256, num_pos=50):
|
| 704 |
+
super().__init__()
|
| 705 |
+
self.row_embeddings = nn.Embedding(num_pos, embedding_dim // 2)
|
| 706 |
+
self.column_embeddings = nn.Embedding(num_pos, embedding_dim - (embedding_dim // 2))
|
| 707 |
+
|
| 708 |
+
def forward(self, pixel_values):
|
| 709 |
+
"""
|
| 710 |
+
pixel_values: (batch_size, height, width, num_channels)
|
| 711 |
+
returns: (batch_size, height, width, embedding_dim * 2)
|
| 712 |
+
"""
|
| 713 |
+
if len(pixel_values.shape) != 4:
|
| 714 |
+
raise ValueError('pixel_values must be a 4D tensor')
|
| 715 |
+
height, width = pixel_values.shape[1:3]
|
| 716 |
+
width_values = torch.arange(width, device=pixel_values.device)
|
| 717 |
+
height_values = torch.arange(height, device=pixel_values.device)
|
| 718 |
+
x_emb = self.column_embeddings(width_values)
|
| 719 |
+
y_emb = self.row_embeddings(height_values)
|
| 720 |
+
# (height, width, embedding_dim * 2)
|
| 721 |
+
pos = torch.cat([x_emb.unsqueeze(0).repeat(height, 1, 1), y_emb.unsqueeze(1).repeat(1, width, 1)], dim=-1)
|
| 722 |
+
# (embedding_dim * 2, height, width)
|
| 723 |
+
pos = pos.permute(2, 0, 1)
|
| 724 |
+
pos = pos.unsqueeze(0)
|
| 725 |
+
# (batch_size, embedding_dim * 2, height, width)
|
| 726 |
+
pos = pos.repeat(pixel_values.shape[0], 1, 1, 1)
|
| 727 |
+
# (batch_size, height, width, embedding_dim * 2)
|
| 728 |
+
pos = pos.permute(0, 2, 3, 1)
|
| 729 |
+
return pos
|
| 730 |
+
|
| 731 |
+
class PositionalEmbeddingCosine1D(nn.Module):
|
| 732 |
+
"""
|
| 733 |
+
This class implements a very simple positional encoding. It follows closely
|
| 734 |
+
the encoder from the link below:
|
| 735 |
+
https://pytorch.org/tutorials/beginner/translation_transformer.html
|
| 736 |
+
Args:
|
| 737 |
+
embed_dim: The dimension of the embeddings.
|
| 738 |
+
dropout_prob: The dropout probability.
|
| 739 |
+
max_seq_len: The maximum length to precompute the positional encodings.
|
| 740 |
+
"""
|
| 741 |
+
def __init__(
|
| 742 |
+
self,
|
| 743 |
+
embed_dim: int = 512,
|
| 744 |
+
max_seq_len: int = 1024) -> None:
|
| 745 |
+
super(PositionalEmbeddingCosine1D, self).__init__()
|
| 746 |
+
self.embed_dim = embed_dim
|
| 747 |
+
self.max_seq_len = max_seq_len
|
| 748 |
+
# Generate the sinusoidal arrays.
|
| 749 |
+
factor = math.log(10000)
|
| 750 |
+
denominator = torch.exp(
|
| 751 |
+
-factor * torch.arange(0, self.embed_dim, 2) / self.embed_dim)
|
| 752 |
+
# Matrix where rows correspond to a positional embedding as a function
|
| 753 |
+
# of the position index (i.e., the row index).
|
| 754 |
+
frequencies = \
|
| 755 |
+
torch.arange(0, self.max_seq_len) \
|
| 756 |
+
.reshape(self.max_seq_len, 1) * denominator
|
| 757 |
+
pos_idx_to_embed = torch.zeros((self.max_seq_len, self.embed_dim))
|
| 758 |
+
# Populate uneven entries.
|
| 759 |
+
pos_idx_to_embed[:, 0::2] = torch.sin(frequencies)
|
| 760 |
+
pos_idx_to_embed[:, 1::2] = torch.cos(frequencies)
|
| 761 |
+
# Save the positional embeddings in a constant buffer.
|
| 762 |
+
self.register_buffer("pos_idx_to_embed", pos_idx_to_embed)
|
| 763 |
+
|
| 764 |
+
def forward(self, seq_embeds: torch.Tensor) -> torch.Tensor:
|
| 765 |
+
"""
|
| 766 |
+
Args:
|
| 767 |
+
seq_embeds: The sequence embeddings in order. Allowed size:
|
| 768 |
+
1. [T, D], where T is the length of the sequence, and D is the
|
| 769 |
+
frame embedding dimension.
|
| 770 |
+
2. [B, T, D], where B is the batch size and T and D are the
|
| 771 |
+
same as above.
|
| 772 |
+
Returns a tensor of with the same dimensions as the input: i.e.,
|
| 773 |
+
[1, T, D] or [T, D].
|
| 774 |
+
"""
|
| 775 |
+
shape_len = len(seq_embeds.shape)
|
| 776 |
+
assert 2 <= shape_len <= 3
|
| 777 |
+
len_seq = seq_embeds.size(-2)
|
| 778 |
+
assert len_seq <= self.max_seq_len
|
| 779 |
+
pos_embeds = self.pos_idx_to_embed[0:seq_embeds.size(-2), :]
|
| 780 |
+
# Adapt pre-computed positional embeddings to the input.
|
| 781 |
+
if shape_len == 3:
|
| 782 |
+
pos_embeds = pos_embeds.view(
|
| 783 |
+
(1, pos_embeds.size(0), pos_embeds.size(1)))
|
| 784 |
+
return pos_embeds
|
| 785 |
+
|
| 786 |
+
|
| 787 |
+
class LearnedAbsolutePositionEmbedding1D(nn.Module):
|
| 788 |
+
"""
|
| 789 |
+
Learnable absolute positional embeddings for 1D sequences.
|
| 790 |
+
Args:
|
| 791 |
+
embed_dim: The dimension of the embeddings.
|
| 792 |
+
max_seq_len: The maximum length to precompute the positional encodings.
|
| 793 |
+
"""
|
| 794 |
+
def __init__(
|
| 795 |
+
self,
|
| 796 |
+
embedding_dim: int = 512,
|
| 797 |
+
num_pos: int = 1024) -> None:
|
| 798 |
+
super(LearnedAbsolutePositionEmbedding1D, self).__init__()
|
| 799 |
+
self.embeddings = nn.Embedding(num_pos, embedding_dim)
|
| 800 |
+
self.num_pos = num_pos
|
| 801 |
+
|
| 802 |
+
def forward(self, seq_embeds: torch.Tensor) -> torch.Tensor:
|
| 803 |
+
"""
|
| 804 |
+
Args:
|
| 805 |
+
seq_embeds: The sequence embeddings in order. Allowed size:
|
| 806 |
+
1. [T, D], where T is the length of the sequence, and D is the
|
| 807 |
+
frame embedding dimension.
|
| 808 |
+
2. [B, T, D], where B is the batch size and T and D are the
|
| 809 |
+
same as above.
|
| 810 |
+
Returns a tensor of with the same dimensions as the input: i.e.,
|
| 811 |
+
[1, T, D] or [T, D].
|
| 812 |
+
"""
|
| 813 |
+
shape_len = len(seq_embeds.shape)
|
| 814 |
+
assert 2 <= shape_len <= 3
|
| 815 |
+
len_seq = seq_embeds.size(-2)
|
| 816 |
+
assert len_seq <= self.num_pos
|
| 817 |
+
# [T, D]
|
| 818 |
+
pos_embeds = self.embeddings(torch.arange(len_seq).to(seq_embeds.device))
|
| 819 |
+
# Adapt pre-computed positional embeddings to the input.
|
| 820 |
+
if shape_len == 3:
|
| 821 |
+
pos_embeds = pos_embeds.view(
|
| 822 |
+
(1, pos_embeds.size(0), pos_embeds.size(1)))
|
| 823 |
+
return pos_embeds
|
| 824 |
+
|
| 825 |
+
def create_git_attention_mask(
|
| 826 |
+
tgt: torch.Tensor,
|
| 827 |
+
memory: torch.Tensor,
|
| 828 |
+
max_length: int
|
| 829 |
+
) -> torch.Tensor:
|
| 830 |
+
# Obtain the dimensions of the target text and memory
|
| 831 |
+
batch_size = tgt.size(0)
|
| 832 |
+
num_tgt = tgt.shape[1]
|
| 833 |
+
num_memory = memory.shape[1]
|
| 834 |
+
total_length = num_memory + num_tgt
|
| 835 |
+
|
| 836 |
+
# Create the top left part of the attention matrix
|
| 837 |
+
top_left = torch.zeros((num_memory, num_memory)) # Attention enabled in this region
|
| 838 |
+
top_right = torch.full((num_memory, num_tgt), float(-3.4028e+38)) # Attention disabled here
|
| 839 |
+
|
| 840 |
+
# Bottom left part of the attention matrix
|
| 841 |
+
bottom_left = torch.zeros((num_tgt, num_memory)) # Attention enabled here
|
| 842 |
+
|
| 843 |
+
# Create a lower triangular matrix for the bottom right part
|
| 844 |
+
bottom_right = torch.tril(torch.ones(num_tgt, num_tgt))
|
| 845 |
+
|
| 846 |
+
# Transform 1s to 0 to enable attention, and 0s to -inf to block attention
|
| 847 |
+
bottom_right = bottom_right.masked_fill(bottom_right == 0, float(-3.4028e+38))
|
| 848 |
+
bottom_right = bottom_right.masked_fill(bottom_right == 1, float(0))
|
| 849 |
+
|
| 850 |
+
# Concatenate matrices to form the full mask
|
| 851 |
+
left = torch.cat((top_left, bottom_left), dim=0)
|
| 852 |
+
right = torch.cat((top_right, bottom_right), dim=0)
|
| 853 |
+
|
| 854 |
+
# Combine left and right parts
|
| 855 |
+
full_attention_mask = torch.cat((left, right), dim=1)
|
| 856 |
+
|
| 857 |
+
# Add padding to reach max_length
|
| 858 |
+
padding = torch.full((total_length, max_length - total_length), float(-3.4028e+38))
|
| 859 |
+
full_attention_mask = torch.cat((full_attention_mask, padding), dim=1)
|
| 860 |
+
|
| 861 |
+
# Add an axis for multi-heads and batch_size
|
| 862 |
+
full_attention_mask = full_attention_mask[None, None, :, :]
|
| 863 |
+
|
| 864 |
+
# Expand the mask to have shape (batch_size, 1, seq_length, max_length)
|
| 865 |
+
full_attention_mask = full_attention_mask.expand(batch_size, 1, full_attention_mask.size(-2), full_attention_mask.size(-1))
|
| 866 |
+
|
| 867 |
+
return full_attention_mask
|
| 868 |
+
|
| 869 |
+
def get_position_ids_from_binary_attention_mask(mask):
|
| 870 |
+
"""
|
| 871 |
+
Extract position IDs from a binary attention mask.
|
| 872 |
+
|
| 873 |
+
Args:
|
| 874 |
+
mask (torch.Tensor): The attention mask tensor of shape (1, 1, seq_len, seq_len),
|
| 875 |
+
where 1 indicates allowed attention and 0 indicates blocked attention.
|
| 876 |
+
|
| 877 |
+
Returns:
|
| 878 |
+
list: A list of lists where each sublist contains the allowed position IDs for each query position.
|
| 879 |
+
"""
|
| 880 |
+
# Assuming the mask is of shape (1, 1, seq_len, seq_len)
|
| 881 |
+
_, _, seq_len, _ = mask.shape
|
| 882 |
+
|
| 883 |
+
# Create a tensor with position IDs from 0 to seq_len - 1
|
| 884 |
+
position_ids = torch.arange(seq_len, dtype=torch.long, device=mask.device)
|
| 885 |
+
|
| 886 |
+
# Add a batch dimension
|
| 887 |
+
position_ids = position_ids.unsqueeze(0)
|
| 888 |
+
|
| 889 |
+
return position_ids
|
| 890 |
+
|
| 891 |
+
def ensure_tensor(variable):
|
| 892 |
+
# Check if the variable is a torch.Tensor
|
| 893 |
+
if isinstance(variable, torch.Tensor):
|
| 894 |
+
# print("Variable is already a tensor.")
|
| 895 |
+
return variable
|
| 896 |
+
else:
|
| 897 |
+
#print("Variable is not a tensor, converting...")
|
| 898 |
+
try:
|
| 899 |
+
# Convert the variable to a tensor
|
| 900 |
+
tensor = torch.tensor(variable)
|
| 901 |
+
#print("Conversion successful.")
|
| 902 |
+
return tensor
|
| 903 |
+
except Exception as e:
|
| 904 |
+
print(f"Error converting to tensor: {e}")
|
| 905 |
+
raise
|
| 906 |
+
|
| 907 |
+
@add_start_docstrings(
|
| 908 |
+
"The bare Model outputting raw hidden-states without any specific head on top.",
|
| 909 |
+
FEYNMODEL_START_DOCSTRING,
|
| 910 |
+
)
|
| 911 |
+
class FeynModel(Gemma2Model):
|
| 912 |
+
"""
|
| 913 |
+
Transformer decoder consisting of *config.num_hidden_layers* layers.
|
| 914 |
+
Each layer is a [`FeynModelDecoderLayer`] + ['LoraLayer'] for *proj* moduls
|
| 915 |
+
NB : LoraLayers will be added and activatd on proj modules onpy if pixel_values is not None
|
| 916 |
+
|
| 917 |
+
Args:
|
| 918 |
+
config: FeynModelConfig
|
| 919 |
+
"""
|
| 920 |
+
|
| 921 |
+
def __init__(self, config: FeynModelConfig):
|
| 922 |
+
super().__init__(config)
|
| 923 |
+
# Initialize weights and apply final processing
|
| 924 |
+
self.mode='llm'
|
| 925 |
+
'''
|
| 926 |
+
self.image_patch_tokens = int(
|
| 927 |
+
(config.vision_config.image_size / config.vision_config.patch_size) ** 2 + 1
|
| 928 |
+
)
|
| 929 |
+
|
| 930 |
+
if config.num_image_with_embedding is not None:
|
| 931 |
+
self.image_patch_tokens *= config.num_image_with_embedding
|
| 932 |
+
'''
|
| 933 |
+
self.image_patch_tokens = 577
|
| 934 |
+
self.post_init()
|
| 935 |
+
|
| 936 |
+
def get_input_embeddings(self):
|
| 937 |
+
return self.embed_tokens
|
| 938 |
+
|
| 939 |
+
def set_input_embeddings(self, value):
|
| 940 |
+
self.embed_tokens = value
|
| 941 |
+
|
| 942 |
+
|
| 943 |
+
|
| 944 |
+
|
| 945 |
+
@add_start_docstrings_to_model_forward(FEYNMODEL_INPUTS_DOCSTRING)
|
| 946 |
+
def forward(
|
| 947 |
+
self,
|
| 948 |
+
input_ids: torch.LongTensor = None,
|
| 949 |
+
attention_mask: Optional[torch.Tensor] = None,
|
| 950 |
+
position_ids: Optional[torch.LongTensor] = None,
|
| 951 |
+
past_key_values: Optional[Union[Cache, List[torch.FloatTensor]]] = None,
|
| 952 |
+
inputs_embeds: Optional[torch.FloatTensor] = None,
|
| 953 |
+
use_cache: Optional[bool] = None,
|
| 954 |
+
output_attentions: Optional[bool] = None,
|
| 955 |
+
output_hidden_states: Optional[bool] = None,
|
| 956 |
+
return_dict: Optional[bool] = None,
|
| 957 |
+
cache_position: Optional[torch.LongTensor] = None,
|
| 958 |
+
causal_attention_mask: Optional[torch.Tensor] = None,
|
| 959 |
+
**kwargs,
|
| 960 |
+
) -> Union[Tuple, BaseModelOutputWithPast]:
|
| 961 |
+
|
| 962 |
+
# print(f" self.mode = {self.mode}")
|
| 963 |
+
# Ensure cache_position is initialized if not provided
|
| 964 |
+
|
| 965 |
+
|
| 966 |
+
if cache_position is None:
|
| 967 |
+
batch_size = input_ids.size(0) if input_ids is not None else inputs_embeds.size(0)
|
| 968 |
+
cache_position = torch.zeros((batch_size,), dtype=torch.long, device=input_ids.device if input_ids is not None else inputs_embeds.device)
|
| 969 |
+
|
| 970 |
+
|
| 971 |
+
|
| 972 |
+
output_attentions = output_attentions if output_attentions is not None else self.config.output_attentions
|
| 973 |
+
output_hidden_states = (
|
| 974 |
+
output_hidden_states if output_hidden_states is not None else self.config.output_hidden_states
|
| 975 |
+
)
|
| 976 |
+
use_cache = use_cache if use_cache is not None else self.config.use_cache
|
| 977 |
+
return_dict = return_dict if return_dict is not None else self.config.use_return_dict
|
| 978 |
+
|
| 979 |
+
if (input_ids is None) ^ (inputs_embeds is not None):
|
| 980 |
+
raise ValueError(
|
| 981 |
+
"You cannot specify both input_ids and inputs_embeds at the same time, and must specify either one"
|
| 982 |
+
)
|
| 983 |
+
|
| 984 |
+
if self.gradient_checkpointing and self.training and use_cache:
|
| 985 |
+
logger.warning_once(
|
| 986 |
+
"`use_cache=True` is incompatible with gradient checkpointing. Setting `use_cache=False`."
|
| 987 |
+
)
|
| 988 |
+
use_cache = False
|
| 989 |
+
|
| 990 |
+
if inputs_embeds is None:
|
| 991 |
+
inputs_embeds = self.embed_tokens(input_ids)
|
| 992 |
+
causal_mask = self._update_causal_mask(
|
| 993 |
+
attention_mask, inputs_embeds, cache_position, past_key_values, output_attentions
|
| 994 |
+
)
|
| 995 |
+
else:
|
| 996 |
+
causal_mask = ensure_tensor(causal_attention_mask)
|
| 997 |
+
position_ids = get_position_ids_from_binary_attention_mask(attention_mask)
|
| 998 |
+
|
| 999 |
+
#print(f" causal_mask = {causal_mask} ")
|
| 1000 |
+
|
| 1001 |
+
if cache_position is None:
|
| 1002 |
+
cache_position = torch.arange(0, inputs_embeds.shape[1], device=inputs_embeds.device)
|
| 1003 |
+
|
| 1004 |
+
if position_ids is None :
|
| 1005 |
+
position_ids = cache_position.unsqueeze(0)
|
| 1006 |
+
|
| 1007 |
+
|
| 1008 |
+
|
| 1009 |
+
# Convert position_ids to a tensor if not already
|
| 1010 |
+
if not isinstance(position_ids, torch.Tensor):
|
| 1011 |
+
|
| 1012 |
+
position_ids = torch.tensor(position_ids, dtype=torch.long, device=inputs_embeds.device)
|
| 1013 |
+
|
| 1014 |
+
|
| 1015 |
+
# embed positions
|
| 1016 |
+
hidden_states = inputs_embeds
|
| 1017 |
+
|
| 1018 |
+
# normalized
|
| 1019 |
+
# FeynModel downcasts the below to float16, causing sqrt(3072)=55.4256 to become 55.5
|
| 1020 |
+
# See https://github.com/huggingface/transformers/pull/29402
|
| 1021 |
+
normalizer = torch.tensor(self.config.hidden_size**0.5, dtype=hidden_states.dtype)
|
| 1022 |
+
hidden_states = hidden_states * normalizer
|
| 1023 |
+
|
| 1024 |
+
all_hidden_states = () if output_hidden_states else None
|
| 1025 |
+
all_self_attns = () if output_attentions else None
|
| 1026 |
+
|
| 1027 |
+
for decoder_layer in self.layers:
|
| 1028 |
+
if output_hidden_states:
|
| 1029 |
+
all_hidden_states += (hidden_states,)
|
| 1030 |
+
|
| 1031 |
+
if self.gradient_checkpointing and self.training:
|
| 1032 |
+
layer_outputs = self._gradient_checkpointing_func(
|
| 1033 |
+
decoder_layer.__call__,
|
| 1034 |
+
hidden_states,
|
| 1035 |
+
causal_mask,
|
| 1036 |
+
position_ids,
|
| 1037 |
+
past_key_values,
|
| 1038 |
+
output_attentions,
|
| 1039 |
+
use_cache,
|
| 1040 |
+
cache_position,
|
| 1041 |
+
)
|
| 1042 |
+
else:
|
| 1043 |
+
layer_outputs = decoder_layer(
|
| 1044 |
+
hidden_states,
|
| 1045 |
+
attention_mask=causal_mask,
|
| 1046 |
+
position_ids=position_ids,
|
| 1047 |
+
past_key_value=past_key_values,
|
| 1048 |
+
output_attentions=output_attentions,
|
| 1049 |
+
use_cache=use_cache,
|
| 1050 |
+
cache_position=cache_position,
|
| 1051 |
+
)
|
| 1052 |
+
|
| 1053 |
+
hidden_states = layer_outputs[0]
|
| 1054 |
+
|
| 1055 |
+
if output_attentions:
|
| 1056 |
+
all_self_attns += (layer_outputs[1],)
|
| 1057 |
+
|
| 1058 |
+
hidden_states = self.norm(hidden_states)
|
| 1059 |
+
|
| 1060 |
+
# add hidden states from the last decoder layer
|
| 1061 |
+
if output_hidden_states:
|
| 1062 |
+
all_hidden_states += (hidden_states,)
|
| 1063 |
+
|
| 1064 |
+
next_cache = past_key_values if use_cache else None
|
| 1065 |
+
|
| 1066 |
+
if not return_dict:
|
| 1067 |
+
return tuple(v for v in [hidden_states, next_cache, all_hidden_states, all_self_attns] if v is not None)
|
| 1068 |
+
return BaseModelOutputWithPast(
|
| 1069 |
+
last_hidden_state=hidden_states,
|
| 1070 |
+
past_key_values=next_cache,
|
| 1071 |
+
hidden_states=all_hidden_states,
|
| 1072 |
+
attentions=all_self_attns,
|
| 1073 |
+
)
|
| 1074 |
+
|
| 1075 |
+
|
| 1076 |
+
|
| 1077 |
+
def _update_causal_mask(
|
| 1078 |
+
self,
|
| 1079 |
+
attention_mask: torch.Tensor,
|
| 1080 |
+
input_tensor: torch.Tensor,
|
| 1081 |
+
cache_position: torch.Tensor,
|
| 1082 |
+
past_key_values: Cache,
|
| 1083 |
+
output_attentions: bool,
|
| 1084 |
+
):
|
| 1085 |
+
|
| 1086 |
+
# print(f" _start _____ _update_causal_mask attention_mask {attention_mask.size()} {attention_mask} ")
|
| 1087 |
+
# Flash Attention currently doesn't support static cache but FeynModel work only with static cache.
|
| 1088 |
+
# So we will pass in attention mask as is in any case, not only when ther's padding. Then we'll use its shape
|
| 1089 |
+
# to cut out keys/values trailing 0 used in static cache. This workaround should be compile compatible
|
| 1090 |
+
# as it doesn't cause dynamic control issues.
|
| 1091 |
+
if self.config._attn_implementation == "flash_attention_2":
|
| 1092 |
+
return attention_mask
|
| 1093 |
+
|
| 1094 |
+
dtype, device = input_tensor.dtype, input_tensor.device
|
| 1095 |
+
min_dtype = torch.finfo(dtype).min
|
| 1096 |
+
sequence_length = input_tensor.shape[1]
|
| 1097 |
+
if isinstance(past_key_values, HybridCache):
|
| 1098 |
+
target_length = past_key_values.get_max_length()
|
| 1099 |
+
else:
|
| 1100 |
+
target_length = attention_mask.shape[-1] if attention_mask is not None else input_tensor.shape[1]
|
| 1101 |
+
|
| 1102 |
+
# In case the provided `attention` mask is 2D, we generate a causal mask here (4D).
|
| 1103 |
+
causal_mask = _prepare_4d_causal_attention_mask_with_cache_position(
|
| 1104 |
+
attention_mask,
|
| 1105 |
+
sequence_length=sequence_length,
|
| 1106 |
+
target_length=target_length,
|
| 1107 |
+
dtype=dtype,
|
| 1108 |
+
device=device,
|
| 1109 |
+
min_dtype=min_dtype,
|
| 1110 |
+
cache_position=cache_position,
|
| 1111 |
+
batch_size=input_tensor.shape[0],
|
| 1112 |
+
)
|
| 1113 |
+
#print(f" _end ______ _update_causal_mask causal_mask {causal_mask.size()} {causal_mask} ")
|
| 1114 |
+
return causal_mask
|
| 1115 |
+
|
| 1116 |
+
|
| 1117 |
+
|
| 1118 |
+
class FeynModelForCausalLM(Gemma2ForCausalLM):
|
| 1119 |
+
_tied_weights_keys = ["lm_head.weight"]
|
| 1120 |
+
config_class = FeynModelConfig
|
| 1121 |
+
def __init__(self, config):
|
| 1122 |
+
super().__init__(config)
|
| 1123 |
+
config.vision_config=Florence2VisionConfig.from_dict(config.vision_config)
|
| 1124 |
+
self.model = FeynModel(config)
|
| 1125 |
+
|
| 1126 |
+
# assert config.vision_config.model_type== 'davit', 'only DaViT is supported for now'
|
| 1127 |
+
self.vision_tower = DaViT.from_config(config=config.vision_config)
|
| 1128 |
+
self._build_image_projection_layers(config)
|
| 1129 |
+
|
| 1130 |
+
self.__causal_attention_mask = None
|
| 1131 |
+
|
| 1132 |
+
# Initialize weights and apply final processing
|
| 1133 |
+
self.post_init()
|
| 1134 |
+
|
| 1135 |
+
################ Vision Tower ########################
|
| 1136 |
+
def _build_image_projection_layers(self, config):
|
| 1137 |
+
image_dim_out = config.vision_config.dim_embed[-1]
|
| 1138 |
+
dim_projection = config.vision_config.projection_dim
|
| 1139 |
+
self.image_projection = nn.Parameter(
|
| 1140 |
+
torch.empty(image_dim_out, dim_projection)
|
| 1141 |
+
)
|
| 1142 |
+
self.image_proj_norm = nn.LayerNorm(dim_projection)
|
| 1143 |
+
image_pos_embed_config = config.vision_config.image_pos_embed
|
| 1144 |
+
if image_pos_embed_config['type'] == 'learned_abs_2d':
|
| 1145 |
+
self.image_pos_embed = LearnedAbsolutePositionEmbedding2D(
|
| 1146 |
+
embedding_dim=image_dim_out,
|
| 1147 |
+
num_pos=image_pos_embed_config['max_pos_embeddings']
|
| 1148 |
+
)
|
| 1149 |
+
else:
|
| 1150 |
+
raise NotImplementedError('Not implemented yet')
|
| 1151 |
+
|
| 1152 |
+
self.image_feature_source = config.vision_config.image_feature_source
|
| 1153 |
+
|
| 1154 |
+
# temporal embedding
|
| 1155 |
+
visual_temporal_embedding_config = config.vision_config.visual_temporal_embedding
|
| 1156 |
+
if visual_temporal_embedding_config['type'] == 'COSINE':
|
| 1157 |
+
self.visual_temporal_embed = PositionalEmbeddingCosine1D(
|
| 1158 |
+
embed_dim=image_dim_out,
|
| 1159 |
+
max_seq_len=visual_temporal_embedding_config['max_temporal_embeddings']
|
| 1160 |
+
)
|
| 1161 |
+
else:
|
| 1162 |
+
raise NotImplementedError('Not implemented yet')
|
| 1163 |
+
|
| 1164 |
+
|
| 1165 |
+
|
| 1166 |
+
def _merge_input_ids_with_image_features(self, image_features, inputs_embeds):
|
| 1167 |
+
batch_size, image_token_length = image_features.size()[:-1]
|
| 1168 |
+
device = image_features.device
|
| 1169 |
+
image_attention_mask = torch.ones(batch_size, image_token_length, device=device)
|
| 1170 |
+
|
| 1171 |
+
if inputs_embeds is None:
|
| 1172 |
+
return image_features, image_attention_mask
|
| 1173 |
+
|
| 1174 |
+
task_prefix_embeds = inputs_embeds
|
| 1175 |
+
task_prefix_attention_mask = torch.ones(batch_size, task_prefix_embeds.size(1), device=device)
|
| 1176 |
+
|
| 1177 |
+
# Assurer que les masques d'attention sont de deux dimensions
|
| 1178 |
+
if len(task_prefix_attention_mask.shape) == 3:
|
| 1179 |
+
task_prefix_attention_mask = task_prefix_attention_mask.squeeze(1)
|
| 1180 |
+
|
| 1181 |
+
# Vérifier la dimension de batch et ajuster si nécessaire
|
| 1182 |
+
if image_features.size(0) != task_prefix_embeds.size(0):
|
| 1183 |
+
raise ValueError("Batch sizes of image_features and task_prefix_embeds do not match")
|
| 1184 |
+
|
| 1185 |
+
# Ajouter une dimension fictive si les dimensions ne sont pas alignées
|
| 1186 |
+
if image_features.dim() < task_prefix_embeds.dim():
|
| 1187 |
+
image_features = image_features.unsqueeze(-1)
|
| 1188 |
+
elif task_prefix_embeds.dim() < image_features.dim():
|
| 1189 |
+
task_prefix_embeds = task_prefix_embeds.unsqueeze(-1)
|
| 1190 |
+
|
| 1191 |
+
# Assurer que toutes les dimensions, sauf dim=1, sont identiques
|
| 1192 |
+
if image_features.size(2) != task_prefix_embeds.size(2):
|
| 1193 |
+
# Ajuster ou signaler une erreur si les dimensions internes ne sont pas compatibles
|
| 1194 |
+
raise ValueError("Internal dimensions of image_features and task_prefix_embeds do not match")
|
| 1195 |
+
|
| 1196 |
+
inputs_embeds = torch.cat([image_features, task_prefix_embeds], dim=1)
|
| 1197 |
+
attention_mask = torch.cat([image_attention_mask, task_prefix_attention_mask], dim=1)
|
| 1198 |
+
|
| 1199 |
+
return inputs_embeds, attention_mask
|
| 1200 |
+
|
| 1201 |
+
def _encode_image(self, pixel_values):
|
| 1202 |
+
if len(pixel_values.shape) == 4:
|
| 1203 |
+
batch_size, C, H, W = pixel_values.shape
|
| 1204 |
+
T = 1
|
| 1205 |
+
x = self.vision_tower.forward_features_unpool(pixel_values)
|
| 1206 |
+
else:
|
| 1207 |
+
# Ajoute une dimension de batch au début si 'pixel_values' n'a que 3 dimensions (C, H, W)
|
| 1208 |
+
pixel_values = pixel_values.unsqueeze(0) # Ajoute une dimension de batch
|
| 1209 |
+
batch_size, C, H, W = pixel_values.shape
|
| 1210 |
+
T = 1
|
| 1211 |
+
x = self.vision_tower.forward_features_unpool(pixel_values)
|
| 1212 |
+
|
| 1213 |
+
if self.image_pos_embed is not None:
|
| 1214 |
+
x = x.view(batch_size * T, -1, x.shape[-1])
|
| 1215 |
+
num_tokens = x.shape[-2]
|
| 1216 |
+
h, w = int(num_tokens ** 0.5), int(num_tokens ** 0.5)
|
| 1217 |
+
assert h * w == num_tokens, 'only support square feature maps for now'
|
| 1218 |
+
x = x.view(batch_size * T, h, w, x.shape[-1])
|
| 1219 |
+
pos_embed = self.image_pos_embed(x)
|
| 1220 |
+
x = x + pos_embed
|
| 1221 |
+
x = x.view(batch_size, T * h*w, x.shape[-1])
|
| 1222 |
+
|
| 1223 |
+
if self.visual_temporal_embed is not None:
|
| 1224 |
+
visual_temporal_embed = self.visual_temporal_embed(x.view(batch_size, T, -1, x.shape[-1])[:, :, 0])
|
| 1225 |
+
x = x.view(batch_size, T, -1, x.shape[-1]) + visual_temporal_embed.view(1, T, 1, x.shape[-1])
|
| 1226 |
+
|
| 1227 |
+
x_feat_dict = {}
|
| 1228 |
+
|
| 1229 |
+
spatial_avg_pool_x = x.view(batch_size, T, -1, x.shape[-1]).mean(dim=2)
|
| 1230 |
+
x_feat_dict['spatial_avg_pool'] = spatial_avg_pool_x
|
| 1231 |
+
|
| 1232 |
+
temporal_avg_pool_x = x.view(batch_size, T, -1, x.shape[-1]).mean(dim=1)
|
| 1233 |
+
x_feat_dict['temporal_avg_pool'] = temporal_avg_pool_x
|
| 1234 |
+
|
| 1235 |
+
x = x.view(batch_size, T, -1, x.shape[-1])[:, -1]
|
| 1236 |
+
x_feat_dict['last_frame'] = x
|
| 1237 |
+
|
| 1238 |
+
new_x = []
|
| 1239 |
+
for _image_feature_source in self.image_feature_source:
|
| 1240 |
+
if _image_feature_source not in x_feat_dict:
|
| 1241 |
+
raise ValueError('invalid image feature source: {}'.format(_image_feature_source))
|
| 1242 |
+
new_x.append(x_feat_dict[_image_feature_source])
|
| 1243 |
+
|
| 1244 |
+
x = torch.cat(new_x, dim=1)
|
| 1245 |
+
|
| 1246 |
+
x = x @ self.image_projection
|
| 1247 |
+
x = self.image_proj_norm(x)
|
| 1248 |
+
|
| 1249 |
+
return x
|
| 1250 |
+
#######################################################
|
| 1251 |
+
|
| 1252 |
+
def get_input_embeddings(self):
|
| 1253 |
+
return self.model.embed_tokens
|
| 1254 |
+
|
| 1255 |
+
def set_input_embeddings(self, value):
|
| 1256 |
+
self.model.embed_tokens = value
|
| 1257 |
+
|
| 1258 |
+
def get_output_embeddings(self):
|
| 1259 |
+
return self.lm_head
|
| 1260 |
+
|
| 1261 |
+
def set_output_embeddings(self, new_embeddings):
|
| 1262 |
+
self.lm_head = new_embeddings
|
| 1263 |
+
|
| 1264 |
+
def set_decoder(self, decoder):
|
| 1265 |
+
self.model = decoder
|
| 1266 |
+
|
| 1267 |
+
def get_decoder(self):
|
| 1268 |
+
return self.model
|
| 1269 |
+
|
| 1270 |
+
@add_start_docstrings_to_model_forward(FEYNMODEL_INPUTS_DOCSTRING)
|
| 1271 |
+
@replace_return_docstrings(output_type=CausalLMOutputWithPast, config_class=_CONFIG_FOR_DOC)
|
| 1272 |
+
def forward(
|
| 1273 |
+
self,
|
| 1274 |
+
input_ids: torch.LongTensor = None,
|
| 1275 |
+
pixel_values: Optional[torch.Tensor] = None,
|
| 1276 |
+
attention_mask: Optional[torch.Tensor] = None,
|
| 1277 |
+
position_ids: Optional[torch.LongTensor] = None,
|
| 1278 |
+
past_key_values: Optional[Union[Cache, List[torch.FloatTensor]]] = None,
|
| 1279 |
+
inputs_embeds: Optional[torch.FloatTensor] = None,
|
| 1280 |
+
labels: Optional[torch.LongTensor] = None,
|
| 1281 |
+
use_cache: Optional[bool] = None,
|
| 1282 |
+
output_attentions: Optional[bool] = None,
|
| 1283 |
+
output_hidden_states: Optional[bool] = None,
|
| 1284 |
+
return_dict: Optional[bool] = None,
|
| 1285 |
+
cache_position: Optional[torch.LongTensor] = None,
|
| 1286 |
+
**kwargs,
|
| 1287 |
+
) -> Union[Tuple, CausalLMOutputWithPast]:
|
| 1288 |
+
r"""
|
| 1289 |
+
Args:
|
| 1290 |
+
labels (`torch.LongTensor` of shape `(batch_size, sequence_length)`, *optional*):
|
| 1291 |
+
Labels for computing the masked language modeling loss. Indices should either be in `[0, ...,
|
| 1292 |
+
config.vocab_size]` or -100 (see `input_ids` docstring). Tokens with indices set to `-100` are ignored
|
| 1293 |
+
(masked), the loss is only computed for the tokens with labels in `[0, ..., config.vocab_size]`.
|
| 1294 |
+
|
| 1295 |
+
Returns:
|
| 1296 |
+
|
| 1297 |
+
Example:
|
| 1298 |
+
|
| 1299 |
+
```python
|
| 1300 |
+
>>> from transformers import AutoTokenizer, GemmaForCausalLM
|
| 1301 |
+
|
| 1302 |
+
>>> model = GemmaForCausalLM.from_pretrained("google/gemma-2-9b")
|
| 1303 |
+
>>> tokenizer = AutoTokenizer.from_pretrained("google/gemma-2-9b")
|
| 1304 |
+
|
| 1305 |
+
>>> prompt = "What is your favorite condiment?"
|
| 1306 |
+
>>> inputs = tokenizer(prompt, return_tensors="pt")
|
| 1307 |
+
|
| 1308 |
+
>>> # Generate
|
| 1309 |
+
>>> generate_ids = model.generate(inputs.input_ids, max_length=30)
|
| 1310 |
+
>>> tokenizer.batch_decode(generate_ids, skip_special_tokens=True, clean_up_tokenization_spaces=False)[0]
|
| 1311 |
+
"What is your favorite condiment?"
|
| 1312 |
+
```"""
|
| 1313 |
+
|
| 1314 |
+
|
| 1315 |
+
if self.training and self.config._attn_implementation != "eager":
|
| 1316 |
+
logger.warning_once(
|
| 1317 |
+
"It is strongly recommended to train FeynModel models with the `eager` attention implementation "
|
| 1318 |
+
f"instead of `{self.config._attn_implementation}`. Use `eager` with `AutoModelForCausalLM.from_pretrained('<path-to-checkpoint>', attn_implementation='eager')`."
|
| 1319 |
+
)
|
| 1320 |
+
output_attentions = output_attentions if output_attentions is not None else self.config.output_attentions
|
| 1321 |
+
output_hidden_states = (
|
| 1322 |
+
output_hidden_states if output_hidden_states is not None else self.config.output_hidden_states
|
| 1323 |
+
)
|
| 1324 |
+
return_dict = return_dict if return_dict is not None else self.config.use_return_dict
|
| 1325 |
+
|
| 1326 |
+
if pixel_values is not None:
|
| 1327 |
+
self.model.mode='vlm'
|
| 1328 |
+
|
| 1329 |
+
if input_ids is not None:
|
| 1330 |
+
inputs_embeds = self.get_input_embeddings()(input_ids)
|
| 1331 |
+
image_features = self._encode_image(pixel_values)
|
| 1332 |
+
inputs_embeds, causal_attention_mask = self._merge_input_ids_with_image_features(image_features, inputs_embeds )
|
| 1333 |
+
causal_attention_mask = create_git_attention_mask(tgt=input_ids, memory=image_features,max_length=2048)
|
| 1334 |
+
causal_attention_mask=causal_attention_mask.to(input_ids.device)
|
| 1335 |
+
self.__causal_attention_mask=causal_attention_mask
|
| 1336 |
+
|
| 1337 |
+
# decoder outputs consists of (dec_features, layer_state, dec_hidden, dec_attn)
|
| 1338 |
+
if pixel_values is not None:
|
| 1339 |
+
outputs = self.model(
|
| 1340 |
+
input_ids=None,
|
| 1341 |
+
attention_mask=causal_attention_mask,
|
| 1342 |
+
position_ids=position_ids,
|
| 1343 |
+
past_key_values=past_key_values,
|
| 1344 |
+
inputs_embeds=inputs_embeds,
|
| 1345 |
+
use_cache=use_cache,
|
| 1346 |
+
output_attentions=output_attentions,
|
| 1347 |
+
output_hidden_states=output_hidden_states,
|
| 1348 |
+
return_dict=return_dict,
|
| 1349 |
+
cache_position=cache_position,
|
| 1350 |
+
causal_attention_mask=causal_attention_mask,
|
| 1351 |
+
)
|
| 1352 |
+
else:
|
| 1353 |
+
outputs = self.model(
|
| 1354 |
+
input_ids=input_ids,
|
| 1355 |
+
attention_mask=attention_mask,
|
| 1356 |
+
position_ids=position_ids,
|
| 1357 |
+
past_key_values=past_key_values,
|
| 1358 |
+
inputs_embeds=inputs_embeds,
|
| 1359 |
+
use_cache=use_cache,
|
| 1360 |
+
output_attentions=output_attentions,
|
| 1361 |
+
output_hidden_states=output_hidden_states,
|
| 1362 |
+
return_dict=return_dict,
|
| 1363 |
+
cache_position=cache_position,
|
| 1364 |
+
causal_attention_mask=self.__causal_attention_mask,
|
| 1365 |
+
)
|
| 1366 |
+
|
| 1367 |
+
|
| 1368 |
+
hidden_states = outputs[0]
|
| 1369 |
+
logits = self.lm_head(hidden_states)
|
| 1370 |
+
|
| 1371 |
+
if self.config.final_logit_softcapping is not None:
|
| 1372 |
+
logits = logits / self.config.final_logit_softcapping
|
| 1373 |
+
logits = torch.tanh(logits)
|
| 1374 |
+
logits = logits * self.config.final_logit_softcapping
|
| 1375 |
+
|
| 1376 |
+
|
| 1377 |
+
logits = logits.float()
|
| 1378 |
+
loss = None
|
| 1379 |
+
if labels is not None:
|
| 1380 |
+
# we are doing next-token prediction; shift prediction scores and input ids by one
|
| 1381 |
+
num_image_tokens = self.model.image_patch_tokens
|
| 1382 |
+
shifted_logits = logits[:, num_image_tokens:-1, :].contiguous()
|
| 1383 |
+
labels = labels[:, 1:].contiguous()
|
| 1384 |
+
loss_fct = CrossEntropyLoss()
|
| 1385 |
+
loss = loss_fct(shifted_logits.view(-1, self.config.vocab_size), labels.view(-1))
|
| 1386 |
+
|
| 1387 |
+
if not return_dict:
|
| 1388 |
+
|
| 1389 |
+
output = (logits,) + outputs[1:]
|
| 1390 |
+
return (loss,) + output if loss is not None else output
|
| 1391 |
+
|
| 1392 |
+
return CausalLMOutputWithPast(
|
| 1393 |
+
loss=loss,
|
| 1394 |
+
logits=logits,
|
| 1395 |
+
past_key_values=outputs.past_key_values,
|
| 1396 |
+
hidden_states=outputs.hidden_states,
|
| 1397 |
+
attentions=outputs.attentions,
|
| 1398 |
+
)
|
| 1399 |
+
|
| 1400 |
+
def prepare_inputs_for_generation(
|
| 1401 |
+
self,
|
| 1402 |
+
input_ids,
|
| 1403 |
+
past_key_values=None,
|
| 1404 |
+
attention_mask=None,
|
| 1405 |
+
inputs_embeds=None,
|
| 1406 |
+
cache_position=None,
|
| 1407 |
+
position_ids=None,
|
| 1408 |
+
use_cache=True,
|
| 1409 |
+
**kwargs,
|
| 1410 |
+
):
|
| 1411 |
+
|
| 1412 |
+
|
| 1413 |
+
# If we have cache: let's slice `input_ids` through `cache_position`, to keep only the unprocessed tokens
|
| 1414 |
+
# Exception 1: when passing input_embeds, input_ids may be missing entries
|
| 1415 |
+
# Exception 2: some generation methods do special slicing of input_ids, so we don't need to do it here
|
| 1416 |
+
if past_key_values is not None:
|
| 1417 |
+
if inputs_embeds is not None: # Exception 1
|
| 1418 |
+
input_ids = input_ids[:, -cache_position.shape[0] :]
|
| 1419 |
+
elif input_ids.shape[1] != cache_position.shape[0]: # Default case (the "else", a no op, is Exception 2)
|
| 1420 |
+
input_ids = input_ids[:, cache_position]
|
| 1421 |
+
|
| 1422 |
+
if attention_mask is not None and position_ids is None:
|
| 1423 |
+
# create position_ids on the fly for batch generation
|
| 1424 |
+
position_ids = attention_mask.long().cumsum(-1) - 1
|
| 1425 |
+
position_ids.masked_fill_(attention_mask == 0, 1)
|
| 1426 |
+
if past_key_values:
|
| 1427 |
+
# print(f"+-+-+-+-+-+-+++ past_key_values +-+-+++- position_ids {position_ids.size()} ================= ")
|
| 1428 |
+
position_ids = position_ids[:, -input_ids.shape[1] :]
|
| 1429 |
+
# This `clone` call is needed to avoid recapturing cuda graphs with `torch.compile`'s
|
| 1430 |
+
# `mode="reduce-overhead`, as otherwise the input `position_ids` would have various stride
|
| 1431 |
+
# during the decoding. Here, simply using `.contiguous()` is not sufficient as in the
|
| 1432 |
+
# batch size = 1 case, `position_ids` is already contiguous but with varying stride
|
| 1433 |
+
# which retriggers a capture.
|
| 1434 |
+
position_ids = position_ids.clone(memory_format=torch.contiguous_format)
|
| 1435 |
+
# print(f"+-+-+-+-+-+-+++ past_key_values +-+-+++- position_ids cmlone ==> {position_ids.size()} ================= ")
|
| 1436 |
+
|
| 1437 |
+
# if `inputs_embeds` are passed, we only want to use them in the 1st generation step
|
| 1438 |
+
if inputs_embeds is not None and cache_position[0] == 0:
|
| 1439 |
+
#print(">>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>> first generation step>>>>>>>>>>>>>>>>>>>>>>>>>>>>>><")
|
| 1440 |
+
model_inputs = {"inputs_embeds": inputs_embeds}
|
| 1441 |
+
else:
|
| 1442 |
+
# The clone here is for the same reason as for `position_ids`.
|
| 1443 |
+
# print(">>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>> The clone here is for the same reason as for `position_ids` ==> input_ids input_ids.clone.>>>>>>>>>>>>>>>>>>>>>>>>>>>>>><")
|
| 1444 |
+
model_inputs = {"input_ids": input_ids.clone(memory_format=torch.contiguous_format)}
|
| 1445 |
+
|
| 1446 |
+
if isinstance(past_key_values, HybridCache) and attention_mask.ndim == 2:
|
| 1447 |
+
if inputs_embeds is not None and input_ids.size(1)!= 0 :
|
| 1448 |
+
###################### V ############## add _ for _ = inputs_embeds.shape
|
| 1449 |
+
batch_size, sequence_length, _ = inputs_embeds.shape
|
| 1450 |
+
device = inputs_embeds.device
|
| 1451 |
+
#print(f"1111111 +-+-+-+-+-+-+-+-+-+- sequence_length = inputs_embeds {sequence_length}")
|
| 1452 |
+
else:
|
| 1453 |
+
batch_size, sequence_length = position_ids.shape
|
| 1454 |
+
device = input_ids.device
|
| 1455 |
+
#print(f"22222222 +-+-+-+-+-+-+-+-+-+- sequence_length = input_ids.shape {sequence_length}")
|
| 1456 |
+
|
| 1457 |
+
dtype = self.lm_head.weight.dtype
|
| 1458 |
+
min_dtype = torch.finfo(dtype).min
|
| 1459 |
+
|
| 1460 |
+
attention_mask = _prepare_4d_causal_attention_mask_with_cache_position(
|
| 1461 |
+
attention_mask,
|
| 1462 |
+
sequence_length=sequence_length,
|
| 1463 |
+
target_length=past_key_values.get_max_length(),
|
| 1464 |
+
dtype=dtype,
|
| 1465 |
+
device=device,
|
| 1466 |
+
min_dtype=min_dtype,
|
| 1467 |
+
cache_position=cache_position,
|
| 1468 |
+
batch_size=batch_size,
|
| 1469 |
+
)
|
| 1470 |
+
|
| 1471 |
+
|
| 1472 |
+
model_inputs.update(
|
| 1473 |
+
{
|
| 1474 |
+
"position_ids": position_ids,
|
| 1475 |
+
"cache_position": cache_position,
|
| 1476 |
+
"past_key_values": past_key_values,
|
| 1477 |
+
"use_cache": use_cache,
|
| 1478 |
+
"attention_mask": attention_mask,
|
| 1479 |
+
}
|
| 1480 |
+
)
|
| 1481 |
+
return model_inputs
|
| 1482 |
+
|
| 1483 |
+
def generate(
|
| 1484 |
+
self,
|
| 1485 |
+
input_ids,
|
| 1486 |
+
pixel_values=None,
|
| 1487 |
+
max_length=None,
|
| 1488 |
+
do_sample=True,
|
| 1489 |
+
temperature=0.7,
|
| 1490 |
+
**kwargs
|
| 1491 |
+
):
|
| 1492 |
+
print("Fonction generate personnalisée appelée")
|
| 1493 |
+
|
| 1494 |
+
if pixel_values is not None:
|
| 1495 |
+
if input_ids is not None:
|
| 1496 |
+
print("input")
|
| 1497 |
+
inputs_embeds = self.get_input_embeddings()(input_ids)
|
| 1498 |
+
print("pixels")
|
| 1499 |
+
image_features = self._encode_image(pixel_values)
|
| 1500 |
+
inputs_embeds, causal_attention_mask = self._merge_input_ids_with_image_features(image_features, inputs_embeds )
|
| 1501 |
+
causal_attention_mask = create_git_attention_mask(tgt=input_ids, memory=image_features,max_length=max_length)
|
| 1502 |
+
causal_attention_mask=causal_attention_mask.to(input_ids.device)
|
| 1503 |
+
self.__causal_attention_mask=causal_attention_mask
|
| 1504 |
+
self.model.mode='vlm'
|
| 1505 |
+
result = super().generate(
|
| 1506 |
+
input_ids=None,
|
| 1507 |
+
inputs_embeds=inputs_embeds,
|
| 1508 |
+
max_length=max_length,
|
| 1509 |
+
do_sample=do_sample,
|
| 1510 |
+
temperature=temperature,
|
| 1511 |
+
**kwargs
|
| 1512 |
+
)
|
| 1513 |
+
|
| 1514 |
+
else:
|
| 1515 |
+
print("llm")
|
| 1516 |
+
self.model.mode=='llm'
|
| 1517 |
+
result = super().generate(
|
| 1518 |
+
input_ids=input_ids,
|
| 1519 |
+
#inputs_embeds=None,
|
| 1520 |
+
max_length=max_length,
|
| 1521 |
+
do_sample=do_sample,
|
| 1522 |
+
temperature=temperature,
|
| 1523 |
+
**kwargs
|
| 1524 |
+
)
|
| 1525 |
+
self.__causal_attention_mask = None
|
| 1526 |
+
|
| 1527 |
+
return result
|
| 1528 |
+
|
__init__.py
ADDED
|
File without changes
|
config.json
ADDED
|
@@ -0,0 +1,253 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
+
{
|
| 2 |
+
"architectures": [
|
| 3 |
+
"FeynModelForCausalLM"
|
| 4 |
+
],
|
| 5 |
+
"attention_bias": false,
|
| 6 |
+
"attention_dropout": 0.0,
|
| 7 |
+
"attn_logit_softcapping": 50.0,
|
| 8 |
+
"auto_map": {
|
| 9 |
+
"AutoConfig": "configuration_feynmodel.FeynModelConfig",
|
| 10 |
+
"AutoModelForCausalLM": "modeling_feynmodel.FeynModelForCausalLM"
|
| 11 |
+
},
|
| 12 |
+
"cache_implementation": "hybrid",
|
| 13 |
+
"final_logit_softcapping": 30.0,
|
| 14 |
+
"head_dim": 256,
|
| 15 |
+
"hidden_act": "gelu_pytorch_tanh",
|
| 16 |
+
"hidden_activation": "gelu_pytorch_tanh",
|
| 17 |
+
"hidden_size": 2304,
|
| 18 |
+
"ignore_index": -100,
|
| 19 |
+
"init_std": 0.02,
|
| 20 |
+
"initializer_range": 0.02,
|
| 21 |
+
"intermediate_size": 9216,
|
| 22 |
+
"max_position_embeddings": 8192,
|
| 23 |
+
"model_type": "FeynModel",
|
| 24 |
+
"num_attention_heads": 8,
|
| 25 |
+
"num_hidden_layers": 26,
|
| 26 |
+
"num_key_value_heads": 4,
|
| 27 |
+
"projection_dim": 1024,
|
| 28 |
+
"query_pre_attn_scalar": 256,
|
| 29 |
+
"rms_norm_eps": 1e-06,
|
| 30 |
+
"rope_theta": 10000.0,
|
| 31 |
+
"sliding_window": 4096,
|
| 32 |
+
"text_config": {
|
| 33 |
+
"_name_or_path": "Imagroune/feynmodel",
|
| 34 |
+
"add_cross_attention": false,
|
| 35 |
+
"architectures": [
|
| 36 |
+
"FeynModelForCausalLM"
|
| 37 |
+
],
|
| 38 |
+
"attention_bias": false,
|
| 39 |
+
"attention_dropout": 0.0,
|
| 40 |
+
"attn_logit_softcapping": 50.0,
|
| 41 |
+
"bad_words_ids": null,
|
| 42 |
+
"begin_suppress_tokens": null,
|
| 43 |
+
"bos_token_id": 2,
|
| 44 |
+
"cache_implementation": "hybrid",
|
| 45 |
+
"chunk_size_feed_forward": 0,
|
| 46 |
+
"cross_attention_hidden_size": null,
|
| 47 |
+
"decoder_start_token_id": null,
|
| 48 |
+
"diversity_penalty": 0.0,
|
| 49 |
+
"do_sample": false,
|
| 50 |
+
"early_stopping": false,
|
| 51 |
+
"encoder_no_repeat_ngram_size": 0,
|
| 52 |
+
"eos_token_id": [
|
| 53 |
+
1,
|
| 54 |
+
107
|
| 55 |
+
],
|
| 56 |
+
"exponential_decay_length_penalty": null,
|
| 57 |
+
"final_logit_softcapping": 30.0,
|
| 58 |
+
"finetuning_task": null,
|
| 59 |
+
"forced_bos_token_id": null,
|
| 60 |
+
"forced_eos_token_id": null,
|
| 61 |
+
"head_dim": 256,
|
| 62 |
+
"hidden_act": "gelu_pytorch_tanh",
|
| 63 |
+
"hidden_activation": "gelu_pytorch_tanh",
|
| 64 |
+
"hidden_size": 2304,
|
| 65 |
+
"id2label": {
|
| 66 |
+
"0": "LABEL_0",
|
| 67 |
+
"1": "LABEL_1"
|
| 68 |
+
},
|
| 69 |
+
"init_std": 0.02,
|
| 70 |
+
"initializer_range": 0.02,
|
| 71 |
+
"intermediate_size": 9216,
|
| 72 |
+
"is_decoder": false,
|
| 73 |
+
"is_encoder_decoder": false,
|
| 74 |
+
"label2id": {
|
| 75 |
+
"LABEL_0": 0,
|
| 76 |
+
"LABEL_1": 1
|
| 77 |
+
},
|
| 78 |
+
"length_penalty": 1.0,
|
| 79 |
+
"max_length": 20,
|
| 80 |
+
"max_position_embeddings": 8192,
|
| 81 |
+
"min_length": 0,
|
| 82 |
+
"model_type": "FeynModel",
|
| 83 |
+
"no_repeat_ngram_size": 0,
|
| 84 |
+
"num_attention_heads": 8,
|
| 85 |
+
"num_beam_groups": 1,
|
| 86 |
+
"num_beams": 1,
|
| 87 |
+
"num_hidden_layers": 26,
|
| 88 |
+
"num_key_value_heads": 4,
|
| 89 |
+
"num_return_sequences": 1,
|
| 90 |
+
"output_attentions": false,
|
| 91 |
+
"output_hidden_states": false,
|
| 92 |
+
"output_scores": false,
|
| 93 |
+
"pad_token_id": 0,
|
| 94 |
+
"prefix": null,
|
| 95 |
+
"problem_type": null,
|
| 96 |
+
"pruned_heads": {},
|
| 97 |
+
"query_pre_attn_scalar": 256,
|
| 98 |
+
"remove_invalid_values": false,
|
| 99 |
+
"repetition_penalty": 1.0,
|
| 100 |
+
"return_dict": true,
|
| 101 |
+
"return_dict_in_generate": false,
|
| 102 |
+
"rms_norm_eps": 1e-06,
|
| 103 |
+
"rope_theta": 10000.0,
|
| 104 |
+
"sep_token_id": null,
|
| 105 |
+
"sliding_window": 4096,
|
| 106 |
+
"suppress_tokens": null,
|
| 107 |
+
"task_specific_params": null,
|
| 108 |
+
"temperature": 1.0,
|
| 109 |
+
"tf_legacy_loss": false,
|
| 110 |
+
"tie_encoder_decoder": false,
|
| 111 |
+
"tie_word_embeddings": true,
|
| 112 |
+
"tokenizer_class": null,
|
| 113 |
+
"top_k": 50,
|
| 114 |
+
"top_p": 1.0,
|
| 115 |
+
"torch_dtype": "float16",
|
| 116 |
+
"torchscript": false,
|
| 117 |
+
"typical_p": 1.0,
|
| 118 |
+
"use_bfloat16": false,
|
| 119 |
+
"use_cache": true,
|
| 120 |
+
"vocab_size": 256000
|
| 121 |
+
},
|
| 122 |
+
"torch_dtype": "float32",
|
| 123 |
+
"transformers_version": "4.44.2",
|
| 124 |
+
"use_cache": true,
|
| 125 |
+
"vision_config": {
|
| 126 |
+
"_name_or_path": "",
|
| 127 |
+
"add_cross_attention": false,
|
| 128 |
+
"architectures": null,
|
| 129 |
+
"bad_words_ids": null,
|
| 130 |
+
"begin_suppress_tokens": null,
|
| 131 |
+
"bos_token_id": null,
|
| 132 |
+
"chunk_size_feed_forward": 0,
|
| 133 |
+
"cross_attention_hidden_size": null,
|
| 134 |
+
"decoder_start_token_id": null,
|
| 135 |
+
"depths": [
|
| 136 |
+
1,
|
| 137 |
+
1,
|
| 138 |
+
9,
|
| 139 |
+
1
|
| 140 |
+
],
|
| 141 |
+
"dim_embed": [
|
| 142 |
+
128,
|
| 143 |
+
256,
|
| 144 |
+
512,
|
| 145 |
+
1024
|
| 146 |
+
],
|
| 147 |
+
"diversity_penalty": 0.0,
|
| 148 |
+
"do_sample": false,
|
| 149 |
+
"drop_path_rate": 0.1,
|
| 150 |
+
"early_stopping": false,
|
| 151 |
+
"enable_checkpoint": false,
|
| 152 |
+
"encoder_no_repeat_ngram_size": 0,
|
| 153 |
+
"eos_token_id": null,
|
| 154 |
+
"exponential_decay_length_penalty": null,
|
| 155 |
+
"finetuning_task": null,
|
| 156 |
+
"forced_bos_token_id": null,
|
| 157 |
+
"forced_eos_token_id": null,
|
| 158 |
+
"id2label": {
|
| 159 |
+
"0": "LABEL_0",
|
| 160 |
+
"1": "LABEL_1"
|
| 161 |
+
},
|
| 162 |
+
"image_feature_source": [
|
| 163 |
+
"spatial_avg_pool",
|
| 164 |
+
"temporal_avg_pool"
|
| 165 |
+
],
|
| 166 |
+
"image_pos_embed": {
|
| 167 |
+
"max_pos_embeddings": 50,
|
| 168 |
+
"type": "learned_abs_2d"
|
| 169 |
+
},
|
| 170 |
+
"is_decoder": false,
|
| 171 |
+
"is_encoder_decoder": false,
|
| 172 |
+
"label2id": {
|
| 173 |
+
"LABEL_0": 0,
|
| 174 |
+
"LABEL_1": 1
|
| 175 |
+
},
|
| 176 |
+
"length_penalty": 1.0,
|
| 177 |
+
"max_length": 20,
|
| 178 |
+
"min_length": 0,
|
| 179 |
+
"model_type": "florence2_vision",
|
| 180 |
+
"no_repeat_ngram_size": 0,
|
| 181 |
+
"num_beam_groups": 1,
|
| 182 |
+
"num_beams": 1,
|
| 183 |
+
"num_groups": [
|
| 184 |
+
4,
|
| 185 |
+
8,
|
| 186 |
+
16,
|
| 187 |
+
32
|
| 188 |
+
],
|
| 189 |
+
"num_heads": [
|
| 190 |
+
4,
|
| 191 |
+
8,
|
| 192 |
+
16,
|
| 193 |
+
32
|
| 194 |
+
],
|
| 195 |
+
"num_return_sequences": 1,
|
| 196 |
+
"output_attentions": false,
|
| 197 |
+
"output_hidden_states": false,
|
| 198 |
+
"output_scores": false,
|
| 199 |
+
"pad_token_id": null,
|
| 200 |
+
"patch_padding": [
|
| 201 |
+
3,
|
| 202 |
+
1,
|
| 203 |
+
1,
|
| 204 |
+
1
|
| 205 |
+
],
|
| 206 |
+
"patch_prenorm": [
|
| 207 |
+
false,
|
| 208 |
+
true,
|
| 209 |
+
true,
|
| 210 |
+
true
|
| 211 |
+
],
|
| 212 |
+
"patch_size": [
|
| 213 |
+
7,
|
| 214 |
+
3,
|
| 215 |
+
3,
|
| 216 |
+
3
|
| 217 |
+
],
|
| 218 |
+
"patch_stride": [
|
| 219 |
+
4,
|
| 220 |
+
2,
|
| 221 |
+
2,
|
| 222 |
+
2
|
| 223 |
+
],
|
| 224 |
+
"prefix": null,
|
| 225 |
+
"problem_type": null,
|
| 226 |
+
"projection_dim": 2304,
|
| 227 |
+
"pruned_heads": {},
|
| 228 |
+
"remove_invalid_values": false,
|
| 229 |
+
"repetition_penalty": 1.0,
|
| 230 |
+
"return_dict": true,
|
| 231 |
+
"return_dict_in_generate": false,
|
| 232 |
+
"sep_token_id": null,
|
| 233 |
+
"suppress_tokens": null,
|
| 234 |
+
"task_specific_params": null,
|
| 235 |
+
"temperature": 1.0,
|
| 236 |
+
"tf_legacy_loss": false,
|
| 237 |
+
"tie_encoder_decoder": false,
|
| 238 |
+
"tie_word_embeddings": true,
|
| 239 |
+
"tokenizer_class": null,
|
| 240 |
+
"top_k": 50,
|
| 241 |
+
"top_p": 1.0,
|
| 242 |
+
"torch_dtype": null,
|
| 243 |
+
"torchscript": false,
|
| 244 |
+
"typical_p": 1.0,
|
| 245 |
+
"use_bfloat16": false,
|
| 246 |
+
"visual_temporal_embedding": {
|
| 247 |
+
"max_temporal_embeddings": 100,
|
| 248 |
+
"type": "COSINE"
|
| 249 |
+
},
|
| 250 |
+
"window_size": 12
|
| 251 |
+
},
|
| 252 |
+
"vocab_size": 256000
|
| 253 |
+
}
|
configuration_feynmodel.py
ADDED
|
@@ -0,0 +1,159 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
+
from transformers import PretrainedConfig
|
| 2 |
+
import copy
|
| 3 |
+
|
| 4 |
+
class Florence2VisionConfig(PretrainedConfig):
|
| 5 |
+
|
| 6 |
+
model_type = "florence2_vision"
|
| 7 |
+
keys_to_ignore_at_inference = ["past_key_values"]
|
| 8 |
+
|
| 9 |
+
def __init__(
|
| 10 |
+
self,
|
| 11 |
+
drop_path_rate=0.1,
|
| 12 |
+
patch_size=[7, 3, 3, 3],
|
| 13 |
+
patch_stride=[4, 2, 2, 2],
|
| 14 |
+
patch_padding=[3, 1, 1, 1],
|
| 15 |
+
patch_prenorm=[False, True, True, True],
|
| 16 |
+
enable_checkpoint=False,
|
| 17 |
+
dim_embed=[256, 512, 1024, 2048],
|
| 18 |
+
num_heads=[8, 16, 32, 64],
|
| 19 |
+
num_groups=[8, 16, 32, 64],
|
| 20 |
+
depths=[1, 1, 9, 1],
|
| 21 |
+
window_size=12,
|
| 22 |
+
projection_dim=1024,
|
| 23 |
+
visual_temporal_embedding=None,
|
| 24 |
+
image_pos_embed=None,
|
| 25 |
+
image_feature_source=["spatial_avg_pool", "temporal_avg_pool"],
|
| 26 |
+
**kwargs,
|
| 27 |
+
):
|
| 28 |
+
self.drop_path_rate = drop_path_rate
|
| 29 |
+
self.patch_size = patch_size
|
| 30 |
+
self.patch_stride = patch_stride
|
| 31 |
+
self.patch_padding = patch_padding
|
| 32 |
+
self.patch_prenorm = patch_prenorm
|
| 33 |
+
self.enable_checkpoint = enable_checkpoint
|
| 34 |
+
self.dim_embed = dim_embed
|
| 35 |
+
self.num_heads = num_heads
|
| 36 |
+
self.num_groups = num_groups
|
| 37 |
+
self.depths = depths
|
| 38 |
+
self.window_size = window_size
|
| 39 |
+
self.projection_dim = projection_dim
|
| 40 |
+
self.visual_temporal_embedding = visual_temporal_embedding
|
| 41 |
+
self.image_pos_embed = image_pos_embed
|
| 42 |
+
self.image_feature_source = image_feature_source
|
| 43 |
+
|
| 44 |
+
super().__init__(**kwargs)
|
| 45 |
+
|
| 46 |
+
|
| 47 |
+
|
| 48 |
+
class Gemma2Config(PretrainedConfig):
|
| 49 |
+
|
| 50 |
+
model_type = "gemma2"
|
| 51 |
+
keys_to_ignore_at_inference = ["past_key_values"]
|
| 52 |
+
|
| 53 |
+
def __init__(
|
| 54 |
+
self,
|
| 55 |
+
vocab_size=256000,
|
| 56 |
+
hidden_size=3072,
|
| 57 |
+
intermediate_size=24576,
|
| 58 |
+
num_hidden_layers=28,
|
| 59 |
+
num_attention_heads=16,
|
| 60 |
+
num_key_value_heads=16,
|
| 61 |
+
head_dim=256,
|
| 62 |
+
hidden_activation="gelu_pytorch_tanh",
|
| 63 |
+
max_position_embeddings=8192,
|
| 64 |
+
initializer_range=0.02,
|
| 65 |
+
rms_norm_eps=1e-6,
|
| 66 |
+
use_cache=True,
|
| 67 |
+
pad_token_id=0,
|
| 68 |
+
eos_token_id=1,
|
| 69 |
+
bos_token_id=2,
|
| 70 |
+
tie_word_embeddings=True,
|
| 71 |
+
rope_theta=10000.0,
|
| 72 |
+
attention_bias=False,
|
| 73 |
+
attention_dropout=0.0,
|
| 74 |
+
final_logit_softcapping=30.0,
|
| 75 |
+
attn_logit_softcapping=50.0,
|
| 76 |
+
query_pre_attn_scalar=224,
|
| 77 |
+
sliding_window=4096,
|
| 78 |
+
**kwargs,
|
| 79 |
+
):
|
| 80 |
+
self.vocab_size = vocab_size
|
| 81 |
+
self.max_position_embeddings = max_position_embeddings
|
| 82 |
+
self.hidden_size = hidden_size
|
| 83 |
+
self.intermediate_size = intermediate_size
|
| 84 |
+
self.num_hidden_layers = num_hidden_layers
|
| 85 |
+
self.num_attention_heads = num_attention_heads
|
| 86 |
+
self.head_dim = head_dim
|
| 87 |
+
self.num_key_value_heads = num_key_value_heads
|
| 88 |
+
self.hidden_activation = hidden_activation
|
| 89 |
+
self.initializer_range = initializer_range
|
| 90 |
+
self.rms_norm_eps = rms_norm_eps
|
| 91 |
+
self.use_cache = use_cache
|
| 92 |
+
self.rope_theta = rope_theta
|
| 93 |
+
self.attention_bias = attention_bias
|
| 94 |
+
self.attention_dropout = attention_dropout
|
| 95 |
+
self.attn_logit_softcapping = attn_logit_softcapping
|
| 96 |
+
|
| 97 |
+
super().__init__(
|
| 98 |
+
pad_token_id=pad_token_id,
|
| 99 |
+
bos_token_id=bos_token_id,
|
| 100 |
+
eos_token_id=eos_token_id,
|
| 101 |
+
tie_word_embeddings=tie_word_embeddings,
|
| 102 |
+
**kwargs,
|
| 103 |
+
)
|
| 104 |
+
self.final_logit_softcapping = final_logit_softcapping
|
| 105 |
+
self.query_pre_attn_scalar = query_pre_attn_scalar
|
| 106 |
+
self.sliding_window = sliding_window
|
| 107 |
+
self.cache_implementation = "hybrid"
|
| 108 |
+
|
| 109 |
+
|
| 110 |
+
|
| 111 |
+
class FeynModelConfig(PretrainedConfig):
|
| 112 |
+
r"""
|
| 113 |
+
This is the configuration class to store the configuration of a [`FeynModel`]. It is used to instantiate a FeynModel
|
| 114 |
+
model according to the specified arguments, defining the model architecture. Instantiating a configuration with the
|
| 115 |
+
defaults will yield a similar configuration to that of the Gemma2-2B + Florence-2-Base + FeynModel V0.1.0.
|
| 116 |
+
```python
|
| 117 |
+
>>> from transformers import FeynModel, FeynModelConfig
|
| 118 |
+
>>> # Initializing a FeynModel style configuration
|
| 119 |
+
>>> configuration = FeynModelConfig()
|
| 120 |
+
>>> # Initializing a model
|
| 121 |
+
>>> model = FeynModel(configuration)
|
| 122 |
+
>>> # Accessing the model configuration
|
| 123 |
+
>>> configuration = model.config
|
| 124 |
+
```"""
|
| 125 |
+
|
| 126 |
+
# model_type = "gemma2"
|
| 127 |
+
# is_composition = False
|
| 128 |
+
model_type = "FeynModel"
|
| 129 |
+
keys_to_ignore_at_inference = ["past_key_values"]
|
| 130 |
+
|
| 131 |
+
def __init__(
|
| 132 |
+
self,
|
| 133 |
+
vision_config=None,
|
| 134 |
+
text_config=None,
|
| 135 |
+
ignore_index=-100,
|
| 136 |
+
vocab_size=256000,
|
| 137 |
+
projection_dim=1024,
|
| 138 |
+
**kwargs,
|
| 139 |
+
):
|
| 140 |
+
self.ignore_index = ignore_index
|
| 141 |
+
self.vocab_size = vocab_size
|
| 142 |
+
self.projection_dim = projection_dim
|
| 143 |
+
self.vision_config = vision_config
|
| 144 |
+
self.vocab_size = self.vocab_size
|
| 145 |
+
|
| 146 |
+
self.text_config = text_config
|
| 147 |
+
# self.sliding_window = text_config.sliding_window
|
| 148 |
+
# Ajout des attributs de text_config à l'instance actuelle de Config
|
| 149 |
+
|
| 150 |
+
if text_config is not None:
|
| 151 |
+
for attr, value in text_config.items():
|
| 152 |
+
setattr(self, attr, value)
|
| 153 |
+
|
| 154 |
+
|
| 155 |
+
super().__init__(**kwargs)
|
| 156 |
+
|
| 157 |
+
|
| 158 |
+
|
| 159 |
+
|
generation_config.json
ADDED
|
@@ -0,0 +1,11 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
+
{
|
| 2 |
+
"_from_model_config": true,
|
| 3 |
+
"bos_token_id": 2,
|
| 4 |
+
"cache_implementation": "hybrid",
|
| 5 |
+
"eos_token_id": [
|
| 6 |
+
1,
|
| 7 |
+
107
|
| 8 |
+
],
|
| 9 |
+
"pad_token_id": 0,
|
| 10 |
+
"transformers_version": "4.44.2"
|
| 11 |
+
}
|
model-00001-of-00003.safetensors
ADDED
|
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
+
version https://git-lfs.github.com/spec/v1
|
| 2 |
+
oid sha256:4214710d3c4b31d9a89527da2c196e344c9a41fbf6e4a7e942a8a626b9e911c5
|
| 3 |
+
size 4917078632
|
model-00002-of-00003.safetensors
ADDED
|
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
+
version https://git-lfs.github.com/spec/v1
|
| 2 |
+
oid sha256:e74788d2d95dc3174fd671a7e987fb4fb0243e25b1c8803a1fef8e084117638e
|
| 3 |
+
size 4983443424
|
model-00003-of-00003.safetensors
ADDED
|
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
+
version https://git-lfs.github.com/spec/v1
|
| 2 |
+
oid sha256:24ca5c47d98179d7796291d5d4d6c2b8706f5173d2dcfc3fa57a6d394575f9fd
|
| 3 |
+
size 932581696
|
model.safetensors.index.json
ADDED
|
@@ -0,0 +1,705 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
+
{
|
| 2 |
+
"metadata": {
|
| 3 |
+
"total_size": 10833017760
|
| 4 |
+
},
|
| 5 |
+
"weight_map": {
|
| 6 |
+
"image_pos_embed.column_embeddings.weight": "model-00003-of-00003.safetensors",
|
| 7 |
+
"image_pos_embed.row_embeddings.weight": "model-00003-of-00003.safetensors",
|
| 8 |
+
"image_proj_norm.bias": "model-00003-of-00003.safetensors",
|
| 9 |
+
"image_proj_norm.weight": "model-00003-of-00003.safetensors",
|
| 10 |
+
"image_projection": "model-00001-of-00003.safetensors",
|
| 11 |
+
"model.embed_tokens.weight": "model-00001-of-00003.safetensors",
|
| 12 |
+
"model.layers.0.input_layernorm.weight": "model-00001-of-00003.safetensors",
|
| 13 |
+
"model.layers.0.mlp.down_proj.weight": "model-00001-of-00003.safetensors",
|
| 14 |
+
"model.layers.0.mlp.gate_proj.weight": "model-00001-of-00003.safetensors",
|
| 15 |
+
"model.layers.0.mlp.up_proj.weight": "model-00001-of-00003.safetensors",
|
| 16 |
+
"model.layers.0.post_attention_layernorm.weight": "model-00001-of-00003.safetensors",
|
| 17 |
+
"model.layers.0.post_feedforward_layernorm.weight": "model-00001-of-00003.safetensors",
|
| 18 |
+
"model.layers.0.pre_feedforward_layernorm.weight": "model-00001-of-00003.safetensors",
|
| 19 |
+
"model.layers.0.self_attn.k_proj.weight": "model-00001-of-00003.safetensors",
|
| 20 |
+
"model.layers.0.self_attn.o_proj.weight": "model-00001-of-00003.safetensors",
|
| 21 |
+
"model.layers.0.self_attn.q_proj.weight": "model-00001-of-00003.safetensors",
|
| 22 |
+
"model.layers.0.self_attn.v_proj.weight": "model-00001-of-00003.safetensors",
|
| 23 |
+
"model.layers.1.input_layernorm.weight": "model-00001-of-00003.safetensors",
|
| 24 |
+
"model.layers.1.mlp.down_proj.weight": "model-00001-of-00003.safetensors",
|
| 25 |
+
"model.layers.1.mlp.gate_proj.weight": "model-00001-of-00003.safetensors",
|
| 26 |
+
"model.layers.1.mlp.up_proj.weight": "model-00001-of-00003.safetensors",
|
| 27 |
+
"model.layers.1.post_attention_layernorm.weight": "model-00001-of-00003.safetensors",
|
| 28 |
+
"model.layers.1.post_feedforward_layernorm.weight": "model-00001-of-00003.safetensors",
|
| 29 |
+
"model.layers.1.pre_feedforward_layernorm.weight": "model-00001-of-00003.safetensors",
|
| 30 |
+
"model.layers.1.self_attn.k_proj.weight": "model-00001-of-00003.safetensors",
|
| 31 |
+
"model.layers.1.self_attn.o_proj.weight": "model-00001-of-00003.safetensors",
|
| 32 |
+
"model.layers.1.self_attn.q_proj.weight": "model-00001-of-00003.safetensors",
|
| 33 |
+
"model.layers.1.self_attn.v_proj.weight": "model-00001-of-00003.safetensors",
|
| 34 |
+
"model.layers.10.input_layernorm.weight": "model-00002-of-00003.safetensors",
|
| 35 |
+
"model.layers.10.mlp.down_proj.weight": "model-00002-of-00003.safetensors",
|
| 36 |
+
"model.layers.10.mlp.gate_proj.weight": "model-00002-of-00003.safetensors",
|
| 37 |
+
"model.layers.10.mlp.up_proj.weight": "model-00002-of-00003.safetensors",
|
| 38 |
+
"model.layers.10.post_attention_layernorm.weight": "model-00002-of-00003.safetensors",
|
| 39 |
+
"model.layers.10.post_feedforward_layernorm.weight": "model-00002-of-00003.safetensors",
|
| 40 |
+
"model.layers.10.pre_feedforward_layernorm.weight": "model-00002-of-00003.safetensors",
|
| 41 |
+
"model.layers.10.self_attn.k_proj.weight": "model-00002-of-00003.safetensors",
|
| 42 |
+
"model.layers.10.self_attn.o_proj.weight": "model-00002-of-00003.safetensors",
|
| 43 |
+
"model.layers.10.self_attn.q_proj.weight": "model-00002-of-00003.safetensors",
|
| 44 |
+
"model.layers.10.self_attn.v_proj.weight": "model-00002-of-00003.safetensors",
|
| 45 |
+
"model.layers.11.input_layernorm.weight": "model-00002-of-00003.safetensors",
|
| 46 |
+
"model.layers.11.mlp.down_proj.weight": "model-00002-of-00003.safetensors",
|
| 47 |
+
"model.layers.11.mlp.gate_proj.weight": "model-00002-of-00003.safetensors",
|
| 48 |
+
"model.layers.11.mlp.up_proj.weight": "model-00002-of-00003.safetensors",
|
| 49 |
+
"model.layers.11.post_attention_layernorm.weight": "model-00002-of-00003.safetensors",
|
| 50 |
+
"model.layers.11.post_feedforward_layernorm.weight": "model-00002-of-00003.safetensors",
|
| 51 |
+
"model.layers.11.pre_feedforward_layernorm.weight": "model-00002-of-00003.safetensors",
|
| 52 |
+
"model.layers.11.self_attn.k_proj.weight": "model-00002-of-00003.safetensors",
|
| 53 |
+
"model.layers.11.self_attn.o_proj.weight": "model-00002-of-00003.safetensors",
|
| 54 |
+
"model.layers.11.self_attn.q_proj.weight": "model-00002-of-00003.safetensors",
|
| 55 |
+
"model.layers.11.self_attn.v_proj.weight": "model-00002-of-00003.safetensors",
|
| 56 |
+
"model.layers.12.input_layernorm.weight": "model-00002-of-00003.safetensors",
|
| 57 |
+
"model.layers.12.mlp.down_proj.weight": "model-00002-of-00003.safetensors",
|
| 58 |
+
"model.layers.12.mlp.gate_proj.weight": "model-00002-of-00003.safetensors",
|
| 59 |
+
"model.layers.12.mlp.up_proj.weight": "model-00002-of-00003.safetensors",
|
| 60 |
+
"model.layers.12.post_attention_layernorm.weight": "model-00002-of-00003.safetensors",
|
| 61 |
+
"model.layers.12.post_feedforward_layernorm.weight": "model-00002-of-00003.safetensors",
|
| 62 |
+
"model.layers.12.pre_feedforward_layernorm.weight": "model-00002-of-00003.safetensors",
|
| 63 |
+
"model.layers.12.self_attn.k_proj.weight": "model-00002-of-00003.safetensors",
|
| 64 |
+
"model.layers.12.self_attn.o_proj.weight": "model-00002-of-00003.safetensors",
|
| 65 |
+
"model.layers.12.self_attn.q_proj.weight": "model-00002-of-00003.safetensors",
|
| 66 |
+
"model.layers.12.self_attn.v_proj.weight": "model-00002-of-00003.safetensors",
|
| 67 |
+
"model.layers.13.input_layernorm.weight": "model-00002-of-00003.safetensors",
|
| 68 |
+
"model.layers.13.mlp.down_proj.weight": "model-00002-of-00003.safetensors",
|
| 69 |
+
"model.layers.13.mlp.gate_proj.weight": "model-00002-of-00003.safetensors",
|
| 70 |
+
"model.layers.13.mlp.up_proj.weight": "model-00002-of-00003.safetensors",
|
| 71 |
+
"model.layers.13.post_attention_layernorm.weight": "model-00002-of-00003.safetensors",
|
| 72 |
+
"model.layers.13.post_feedforward_layernorm.weight": "model-00002-of-00003.safetensors",
|
| 73 |
+
"model.layers.13.pre_feedforward_layernorm.weight": "model-00002-of-00003.safetensors",
|
| 74 |
+
"model.layers.13.self_attn.k_proj.weight": "model-00002-of-00003.safetensors",
|
| 75 |
+
"model.layers.13.self_attn.o_proj.weight": "model-00002-of-00003.safetensors",
|
| 76 |
+
"model.layers.13.self_attn.q_proj.weight": "model-00002-of-00003.safetensors",
|
| 77 |
+
"model.layers.13.self_attn.v_proj.weight": "model-00002-of-00003.safetensors",
|
| 78 |
+
"model.layers.14.input_layernorm.weight": "model-00002-of-00003.safetensors",
|
| 79 |
+
"model.layers.14.mlp.down_proj.weight": "model-00002-of-00003.safetensors",
|
| 80 |
+
"model.layers.14.mlp.gate_proj.weight": "model-00002-of-00003.safetensors",
|
| 81 |
+
"model.layers.14.mlp.up_proj.weight": "model-00002-of-00003.safetensors",
|
| 82 |
+
"model.layers.14.post_attention_layernorm.weight": "model-00002-of-00003.safetensors",
|
| 83 |
+
"model.layers.14.post_feedforward_layernorm.weight": "model-00002-of-00003.safetensors",
|
| 84 |
+
"model.layers.14.pre_feedforward_layernorm.weight": "model-00002-of-00003.safetensors",
|
| 85 |
+
"model.layers.14.self_attn.k_proj.weight": "model-00002-of-00003.safetensors",
|
| 86 |
+
"model.layers.14.self_attn.o_proj.weight": "model-00002-of-00003.safetensors",
|
| 87 |
+
"model.layers.14.self_attn.q_proj.weight": "model-00002-of-00003.safetensors",
|
| 88 |
+
"model.layers.14.self_attn.v_proj.weight": "model-00002-of-00003.safetensors",
|
| 89 |
+
"model.layers.15.input_layernorm.weight": "model-00002-of-00003.safetensors",
|
| 90 |
+
"model.layers.15.mlp.down_proj.weight": "model-00002-of-00003.safetensors",
|
| 91 |
+
"model.layers.15.mlp.gate_proj.weight": "model-00002-of-00003.safetensors",
|
| 92 |
+
"model.layers.15.mlp.up_proj.weight": "model-00002-of-00003.safetensors",
|
| 93 |
+
"model.layers.15.post_attention_layernorm.weight": "model-00002-of-00003.safetensors",
|
| 94 |
+
"model.layers.15.post_feedforward_layernorm.weight": "model-00002-of-00003.safetensors",
|
| 95 |
+
"model.layers.15.pre_feedforward_layernorm.weight": "model-00002-of-00003.safetensors",
|
| 96 |
+
"model.layers.15.self_attn.k_proj.weight": "model-00002-of-00003.safetensors",
|
| 97 |
+
"model.layers.15.self_attn.o_proj.weight": "model-00002-of-00003.safetensors",
|
| 98 |
+
"model.layers.15.self_attn.q_proj.weight": "model-00002-of-00003.safetensors",
|
| 99 |
+
"model.layers.15.self_attn.v_proj.weight": "model-00002-of-00003.safetensors",
|
| 100 |
+
"model.layers.16.input_layernorm.weight": "model-00002-of-00003.safetensors",
|
| 101 |
+
"model.layers.16.mlp.down_proj.weight": "model-00002-of-00003.safetensors",
|
| 102 |
+
"model.layers.16.mlp.gate_proj.weight": "model-00002-of-00003.safetensors",
|
| 103 |
+
"model.layers.16.mlp.up_proj.weight": "model-00002-of-00003.safetensors",
|
| 104 |
+
"model.layers.16.post_attention_layernorm.weight": "model-00002-of-00003.safetensors",
|
| 105 |
+
"model.layers.16.post_feedforward_layernorm.weight": "model-00002-of-00003.safetensors",
|
| 106 |
+
"model.layers.16.pre_feedforward_layernorm.weight": "model-00002-of-00003.safetensors",
|
| 107 |
+
"model.layers.16.self_attn.k_proj.weight": "model-00002-of-00003.safetensors",
|
| 108 |
+
"model.layers.16.self_attn.o_proj.weight": "model-00002-of-00003.safetensors",
|
| 109 |
+
"model.layers.16.self_attn.q_proj.weight": "model-00002-of-00003.safetensors",
|
| 110 |
+
"model.layers.16.self_attn.v_proj.weight": "model-00002-of-00003.safetensors",
|
| 111 |
+
"model.layers.17.input_layernorm.weight": "model-00002-of-00003.safetensors",
|
| 112 |
+
"model.layers.17.mlp.down_proj.weight": "model-00002-of-00003.safetensors",
|
| 113 |
+
"model.layers.17.mlp.gate_proj.weight": "model-00002-of-00003.safetensors",
|
| 114 |
+
"model.layers.17.mlp.up_proj.weight": "model-00002-of-00003.safetensors",
|
| 115 |
+
"model.layers.17.post_attention_layernorm.weight": "model-00002-of-00003.safetensors",
|
| 116 |
+
"model.layers.17.post_feedforward_layernorm.weight": "model-00002-of-00003.safetensors",
|
| 117 |
+
"model.layers.17.pre_feedforward_layernorm.weight": "model-00002-of-00003.safetensors",
|
| 118 |
+
"model.layers.17.self_attn.k_proj.weight": "model-00002-of-00003.safetensors",
|
| 119 |
+
"model.layers.17.self_attn.o_proj.weight": "model-00002-of-00003.safetensors",
|
| 120 |
+
"model.layers.17.self_attn.q_proj.weight": "model-00002-of-00003.safetensors",
|
| 121 |
+
"model.layers.17.self_attn.v_proj.weight": "model-00002-of-00003.safetensors",
|
| 122 |
+
"model.layers.18.input_layernorm.weight": "model-00002-of-00003.safetensors",
|
| 123 |
+
"model.layers.18.mlp.down_proj.weight": "model-00002-of-00003.safetensors",
|
| 124 |
+
"model.layers.18.mlp.gate_proj.weight": "model-00002-of-00003.safetensors",
|
| 125 |
+
"model.layers.18.mlp.up_proj.weight": "model-00002-of-00003.safetensors",
|
| 126 |
+
"model.layers.18.post_attention_layernorm.weight": "model-00002-of-00003.safetensors",
|
| 127 |
+
"model.layers.18.post_feedforward_layernorm.weight": "model-00002-of-00003.safetensors",
|
| 128 |
+
"model.layers.18.pre_feedforward_layernorm.weight": "model-00002-of-00003.safetensors",
|
| 129 |
+
"model.layers.18.self_attn.k_proj.weight": "model-00002-of-00003.safetensors",
|
| 130 |
+
"model.layers.18.self_attn.o_proj.weight": "model-00002-of-00003.safetensors",
|
| 131 |
+
"model.layers.18.self_attn.q_proj.weight": "model-00002-of-00003.safetensors",
|
| 132 |
+
"model.layers.18.self_attn.v_proj.weight": "model-00002-of-00003.safetensors",
|
| 133 |
+
"model.layers.19.input_layernorm.weight": "model-00002-of-00003.safetensors",
|
| 134 |
+
"model.layers.19.mlp.down_proj.weight": "model-00002-of-00003.safetensors",
|
| 135 |
+
"model.layers.19.mlp.gate_proj.weight": "model-00002-of-00003.safetensors",
|
| 136 |
+
"model.layers.19.mlp.up_proj.weight": "model-00002-of-00003.safetensors",
|
| 137 |
+
"model.layers.19.post_attention_layernorm.weight": "model-00002-of-00003.safetensors",
|
| 138 |
+
"model.layers.19.post_feedforward_layernorm.weight": "model-00002-of-00003.safetensors",
|
| 139 |
+
"model.layers.19.pre_feedforward_layernorm.weight": "model-00002-of-00003.safetensors",
|
| 140 |
+
"model.layers.19.self_attn.k_proj.weight": "model-00002-of-00003.safetensors",
|
| 141 |
+
"model.layers.19.self_attn.o_proj.weight": "model-00002-of-00003.safetensors",
|
| 142 |
+
"model.layers.19.self_attn.q_proj.weight": "model-00002-of-00003.safetensors",
|
| 143 |
+
"model.layers.19.self_attn.v_proj.weight": "model-00002-of-00003.safetensors",
|
| 144 |
+
"model.layers.2.input_layernorm.weight": "model-00001-of-00003.safetensors",
|
| 145 |
+
"model.layers.2.mlp.down_proj.weight": "model-00001-of-00003.safetensors",
|
| 146 |
+
"model.layers.2.mlp.gate_proj.weight": "model-00001-of-00003.safetensors",
|
| 147 |
+
"model.layers.2.mlp.up_proj.weight": "model-00001-of-00003.safetensors",
|
| 148 |
+
"model.layers.2.post_attention_layernorm.weight": "model-00001-of-00003.safetensors",
|
| 149 |
+
"model.layers.2.post_feedforward_layernorm.weight": "model-00001-of-00003.safetensors",
|
| 150 |
+
"model.layers.2.pre_feedforward_layernorm.weight": "model-00001-of-00003.safetensors",
|
| 151 |
+
"model.layers.2.self_attn.k_proj.weight": "model-00001-of-00003.safetensors",
|
| 152 |
+
"model.layers.2.self_attn.o_proj.weight": "model-00001-of-00003.safetensors",
|
| 153 |
+
"model.layers.2.self_attn.q_proj.weight": "model-00001-of-00003.safetensors",
|
| 154 |
+
"model.layers.2.self_attn.v_proj.weight": "model-00001-of-00003.safetensors",
|
| 155 |
+
"model.layers.20.input_layernorm.weight": "model-00002-of-00003.safetensors",
|
| 156 |
+
"model.layers.20.mlp.down_proj.weight": "model-00002-of-00003.safetensors",
|
| 157 |
+
"model.layers.20.mlp.gate_proj.weight": "model-00002-of-00003.safetensors",
|
| 158 |
+
"model.layers.20.mlp.up_proj.weight": "model-00002-of-00003.safetensors",
|
| 159 |
+
"model.layers.20.post_attention_layernorm.weight": "model-00002-of-00003.safetensors",
|
| 160 |
+
"model.layers.20.post_feedforward_layernorm.weight": "model-00002-of-00003.safetensors",
|
| 161 |
+
"model.layers.20.pre_feedforward_layernorm.weight": "model-00002-of-00003.safetensors",
|
| 162 |
+
"model.layers.20.self_attn.k_proj.weight": "model-00002-of-00003.safetensors",
|
| 163 |
+
"model.layers.20.self_attn.o_proj.weight": "model-00002-of-00003.safetensors",
|
| 164 |
+
"model.layers.20.self_attn.q_proj.weight": "model-00002-of-00003.safetensors",
|
| 165 |
+
"model.layers.20.self_attn.v_proj.weight": "model-00002-of-00003.safetensors",
|
| 166 |
+
"model.layers.21.input_layernorm.weight": "model-00002-of-00003.safetensors",
|
| 167 |
+
"model.layers.21.mlp.down_proj.weight": "model-00002-of-00003.safetensors",
|
| 168 |
+
"model.layers.21.mlp.gate_proj.weight": "model-00002-of-00003.safetensors",
|
| 169 |
+
"model.layers.21.mlp.up_proj.weight": "model-00002-of-00003.safetensors",
|
| 170 |
+
"model.layers.21.post_attention_layernorm.weight": "model-00002-of-00003.safetensors",
|
| 171 |
+
"model.layers.21.post_feedforward_layernorm.weight": "model-00002-of-00003.safetensors",
|
| 172 |
+
"model.layers.21.pre_feedforward_layernorm.weight": "model-00002-of-00003.safetensors",
|
| 173 |
+
"model.layers.21.self_attn.k_proj.weight": "model-00002-of-00003.safetensors",
|
| 174 |
+
"model.layers.21.self_attn.o_proj.weight": "model-00002-of-00003.safetensors",
|
| 175 |
+
"model.layers.21.self_attn.q_proj.weight": "model-00002-of-00003.safetensors",
|
| 176 |
+
"model.layers.21.self_attn.v_proj.weight": "model-00002-of-00003.safetensors",
|
| 177 |
+
"model.layers.22.input_layernorm.weight": "model-00002-of-00003.safetensors",
|
| 178 |
+
"model.layers.22.mlp.down_proj.weight": "model-00002-of-00003.safetensors",
|
| 179 |
+
"model.layers.22.mlp.gate_proj.weight": "model-00002-of-00003.safetensors",
|
| 180 |
+
"model.layers.22.mlp.up_proj.weight": "model-00002-of-00003.safetensors",
|
| 181 |
+
"model.layers.22.post_attention_layernorm.weight": "model-00002-of-00003.safetensors",
|
| 182 |
+
"model.layers.22.post_feedforward_layernorm.weight": "model-00002-of-00003.safetensors",
|
| 183 |
+
"model.layers.22.pre_feedforward_layernorm.weight": "model-00002-of-00003.safetensors",
|
| 184 |
+
"model.layers.22.self_attn.k_proj.weight": "model-00002-of-00003.safetensors",
|
| 185 |
+
"model.layers.22.self_attn.o_proj.weight": "model-00002-of-00003.safetensors",
|
| 186 |
+
"model.layers.22.self_attn.q_proj.weight": "model-00002-of-00003.safetensors",
|
| 187 |
+
"model.layers.22.self_attn.v_proj.weight": "model-00002-of-00003.safetensors",
|
| 188 |
+
"model.layers.23.input_layernorm.weight": "model-00002-of-00003.safetensors",
|
| 189 |
+
"model.layers.23.mlp.down_proj.weight": "model-00002-of-00003.safetensors",
|
| 190 |
+
"model.layers.23.mlp.gate_proj.weight": "model-00002-of-00003.safetensors",
|
| 191 |
+
"model.layers.23.mlp.up_proj.weight": "model-00002-of-00003.safetensors",
|
| 192 |
+
"model.layers.23.post_attention_layernorm.weight": "model-00002-of-00003.safetensors",
|
| 193 |
+
"model.layers.23.post_feedforward_layernorm.weight": "model-00002-of-00003.safetensors",
|
| 194 |
+
"model.layers.23.pre_feedforward_layernorm.weight": "model-00002-of-00003.safetensors",
|
| 195 |
+
"model.layers.23.self_attn.k_proj.weight": "model-00002-of-00003.safetensors",
|
| 196 |
+
"model.layers.23.self_attn.o_proj.weight": "model-00002-of-00003.safetensors",
|
| 197 |
+
"model.layers.23.self_attn.q_proj.weight": "model-00002-of-00003.safetensors",
|
| 198 |
+
"model.layers.23.self_attn.v_proj.weight": "model-00002-of-00003.safetensors",
|
| 199 |
+
"model.layers.24.input_layernorm.weight": "model-00003-of-00003.safetensors",
|
| 200 |
+
"model.layers.24.mlp.down_proj.weight": "model-00003-of-00003.safetensors",
|
| 201 |
+
"model.layers.24.mlp.gate_proj.weight": "model-00003-of-00003.safetensors",
|
| 202 |
+
"model.layers.24.mlp.up_proj.weight": "model-00003-of-00003.safetensors",
|
| 203 |
+
"model.layers.24.post_attention_layernorm.weight": "model-00003-of-00003.safetensors",
|
| 204 |
+
"model.layers.24.post_feedforward_layernorm.weight": "model-00003-of-00003.safetensors",
|
| 205 |
+
"model.layers.24.pre_feedforward_layernorm.weight": "model-00003-of-00003.safetensors",
|
| 206 |
+
"model.layers.24.self_attn.k_proj.weight": "model-00002-of-00003.safetensors",
|
| 207 |
+
"model.layers.24.self_attn.o_proj.weight": "model-00002-of-00003.safetensors",
|
| 208 |
+
"model.layers.24.self_attn.q_proj.weight": "model-00002-of-00003.safetensors",
|
| 209 |
+
"model.layers.24.self_attn.v_proj.weight": "model-00002-of-00003.safetensors",
|
| 210 |
+
"model.layers.25.input_layernorm.weight": "model-00003-of-00003.safetensors",
|
| 211 |
+
"model.layers.25.mlp.down_proj.weight": "model-00003-of-00003.safetensors",
|
| 212 |
+
"model.layers.25.mlp.gate_proj.weight": "model-00003-of-00003.safetensors",
|
| 213 |
+
"model.layers.25.mlp.up_proj.weight": "model-00003-of-00003.safetensors",
|
| 214 |
+
"model.layers.25.post_attention_layernorm.weight": "model-00003-of-00003.safetensors",
|
| 215 |
+
"model.layers.25.post_feedforward_layernorm.weight": "model-00003-of-00003.safetensors",
|
| 216 |
+
"model.layers.25.pre_feedforward_layernorm.weight": "model-00003-of-00003.safetensors",
|
| 217 |
+
"model.layers.25.self_attn.k_proj.weight": "model-00003-of-00003.safetensors",
|
| 218 |
+
"model.layers.25.self_attn.o_proj.weight": "model-00003-of-00003.safetensors",
|
| 219 |
+
"model.layers.25.self_attn.q_proj.weight": "model-00003-of-00003.safetensors",
|
| 220 |
+
"model.layers.25.self_attn.v_proj.weight": "model-00003-of-00003.safetensors",
|
| 221 |
+
"model.layers.3.input_layernorm.weight": "model-00001-of-00003.safetensors",
|
| 222 |
+
"model.layers.3.mlp.down_proj.weight": "model-00001-of-00003.safetensors",
|
| 223 |
+
"model.layers.3.mlp.gate_proj.weight": "model-00001-of-00003.safetensors",
|
| 224 |
+
"model.layers.3.mlp.up_proj.weight": "model-00001-of-00003.safetensors",
|
| 225 |
+
"model.layers.3.post_attention_layernorm.weight": "model-00001-of-00003.safetensors",
|
| 226 |
+
"model.layers.3.post_feedforward_layernorm.weight": "model-00001-of-00003.safetensors",
|
| 227 |
+
"model.layers.3.pre_feedforward_layernorm.weight": "model-00001-of-00003.safetensors",
|
| 228 |
+
"model.layers.3.self_attn.k_proj.weight": "model-00001-of-00003.safetensors",
|
| 229 |
+
"model.layers.3.self_attn.o_proj.weight": "model-00001-of-00003.safetensors",
|
| 230 |
+
"model.layers.3.self_attn.q_proj.weight": "model-00001-of-00003.safetensors",
|
| 231 |
+
"model.layers.3.self_attn.v_proj.weight": "model-00001-of-00003.safetensors",
|
| 232 |
+
"model.layers.4.input_layernorm.weight": "model-00001-of-00003.safetensors",
|
| 233 |
+
"model.layers.4.mlp.down_proj.weight": "model-00001-of-00003.safetensors",
|
| 234 |
+
"model.layers.4.mlp.gate_proj.weight": "model-00001-of-00003.safetensors",
|
| 235 |
+
"model.layers.4.mlp.up_proj.weight": "model-00001-of-00003.safetensors",
|
| 236 |
+
"model.layers.4.post_attention_layernorm.weight": "model-00001-of-00003.safetensors",
|
| 237 |
+
"model.layers.4.post_feedforward_layernorm.weight": "model-00001-of-00003.safetensors",
|
| 238 |
+
"model.layers.4.pre_feedforward_layernorm.weight": "model-00001-of-00003.safetensors",
|
| 239 |
+
"model.layers.4.self_attn.k_proj.weight": "model-00001-of-00003.safetensors",
|
| 240 |
+
"model.layers.4.self_attn.o_proj.weight": "model-00001-of-00003.safetensors",
|
| 241 |
+
"model.layers.4.self_attn.q_proj.weight": "model-00001-of-00003.safetensors",
|
| 242 |
+
"model.layers.4.self_attn.v_proj.weight": "model-00001-of-00003.safetensors",
|
| 243 |
+
"model.layers.5.input_layernorm.weight": "model-00001-of-00003.safetensors",
|
| 244 |
+
"model.layers.5.mlp.down_proj.weight": "model-00001-of-00003.safetensors",
|
| 245 |
+
"model.layers.5.mlp.gate_proj.weight": "model-00001-of-00003.safetensors",
|
| 246 |
+
"model.layers.5.mlp.up_proj.weight": "model-00001-of-00003.safetensors",
|
| 247 |
+
"model.layers.5.post_attention_layernorm.weight": "model-00001-of-00003.safetensors",
|
| 248 |
+
"model.layers.5.post_feedforward_layernorm.weight": "model-00001-of-00003.safetensors",
|
| 249 |
+
"model.layers.5.pre_feedforward_layernorm.weight": "model-00001-of-00003.safetensors",
|
| 250 |
+
"model.layers.5.self_attn.k_proj.weight": "model-00001-of-00003.safetensors",
|
| 251 |
+
"model.layers.5.self_attn.o_proj.weight": "model-00001-of-00003.safetensors",
|
| 252 |
+
"model.layers.5.self_attn.q_proj.weight": "model-00001-of-00003.safetensors",
|
| 253 |
+
"model.layers.5.self_attn.v_proj.weight": "model-00001-of-00003.safetensors",
|
| 254 |
+
"model.layers.6.input_layernorm.weight": "model-00001-of-00003.safetensors",
|
| 255 |
+
"model.layers.6.mlp.down_proj.weight": "model-00001-of-00003.safetensors",
|
| 256 |
+
"model.layers.6.mlp.gate_proj.weight": "model-00001-of-00003.safetensors",
|
| 257 |
+
"model.layers.6.mlp.up_proj.weight": "model-00001-of-00003.safetensors",
|
| 258 |
+
"model.layers.6.post_attention_layernorm.weight": "model-00001-of-00003.safetensors",
|
| 259 |
+
"model.layers.6.post_feedforward_layernorm.weight": "model-00001-of-00003.safetensors",
|
| 260 |
+
"model.layers.6.pre_feedforward_layernorm.weight": "model-00001-of-00003.safetensors",
|
| 261 |
+
"model.layers.6.self_attn.k_proj.weight": "model-00001-of-00003.safetensors",
|
| 262 |
+
"model.layers.6.self_attn.o_proj.weight": "model-00001-of-00003.safetensors",
|
| 263 |
+
"model.layers.6.self_attn.q_proj.weight": "model-00001-of-00003.safetensors",
|
| 264 |
+
"model.layers.6.self_attn.v_proj.weight": "model-00001-of-00003.safetensors",
|
| 265 |
+
"model.layers.7.input_layernorm.weight": "model-00001-of-00003.safetensors",
|
| 266 |
+
"model.layers.7.mlp.down_proj.weight": "model-00001-of-00003.safetensors",
|
| 267 |
+
"model.layers.7.mlp.gate_proj.weight": "model-00001-of-00003.safetensors",
|
| 268 |
+
"model.layers.7.mlp.up_proj.weight": "model-00001-of-00003.safetensors",
|
| 269 |
+
"model.layers.7.post_attention_layernorm.weight": "model-00001-of-00003.safetensors",
|
| 270 |
+
"model.layers.7.post_feedforward_layernorm.weight": "model-00001-of-00003.safetensors",
|
| 271 |
+
"model.layers.7.pre_feedforward_layernorm.weight": "model-00001-of-00003.safetensors",
|
| 272 |
+
"model.layers.7.self_attn.k_proj.weight": "model-00001-of-00003.safetensors",
|
| 273 |
+
"model.layers.7.self_attn.o_proj.weight": "model-00001-of-00003.safetensors",
|
| 274 |
+
"model.layers.7.self_attn.q_proj.weight": "model-00001-of-00003.safetensors",
|
| 275 |
+
"model.layers.7.self_attn.v_proj.weight": "model-00001-of-00003.safetensors",
|
| 276 |
+
"model.layers.8.input_layernorm.weight": "model-00002-of-00003.safetensors",
|
| 277 |
+
"model.layers.8.mlp.down_proj.weight": "model-00002-of-00003.safetensors",
|
| 278 |
+
"model.layers.8.mlp.gate_proj.weight": "model-00002-of-00003.safetensors",
|
| 279 |
+
"model.layers.8.mlp.up_proj.weight": "model-00002-of-00003.safetensors",
|
| 280 |
+
"model.layers.8.post_attention_layernorm.weight": "model-00002-of-00003.safetensors",
|
| 281 |
+
"model.layers.8.post_feedforward_layernorm.weight": "model-00002-of-00003.safetensors",
|
| 282 |
+
"model.layers.8.pre_feedforward_layernorm.weight": "model-00002-of-00003.safetensors",
|
| 283 |
+
"model.layers.8.self_attn.k_proj.weight": "model-00001-of-00003.safetensors",
|
| 284 |
+
"model.layers.8.self_attn.o_proj.weight": "model-00001-of-00003.safetensors",
|
| 285 |
+
"model.layers.8.self_attn.q_proj.weight": "model-00001-of-00003.safetensors",
|
| 286 |
+
"model.layers.8.self_attn.v_proj.weight": "model-00001-of-00003.safetensors",
|
| 287 |
+
"model.layers.9.input_layernorm.weight": "model-00002-of-00003.safetensors",
|
| 288 |
+
"model.layers.9.mlp.down_proj.weight": "model-00002-of-00003.safetensors",
|
| 289 |
+
"model.layers.9.mlp.gate_proj.weight": "model-00002-of-00003.safetensors",
|
| 290 |
+
"model.layers.9.mlp.up_proj.weight": "model-00002-of-00003.safetensors",
|
| 291 |
+
"model.layers.9.post_attention_layernorm.weight": "model-00002-of-00003.safetensors",
|
| 292 |
+
"model.layers.9.post_feedforward_layernorm.weight": "model-00002-of-00003.safetensors",
|
| 293 |
+
"model.layers.9.pre_feedforward_layernorm.weight": "model-00002-of-00003.safetensors",
|
| 294 |
+
"model.layers.9.self_attn.k_proj.weight": "model-00002-of-00003.safetensors",
|
| 295 |
+
"model.layers.9.self_attn.o_proj.weight": "model-00002-of-00003.safetensors",
|
| 296 |
+
"model.layers.9.self_attn.q_proj.weight": "model-00002-of-00003.safetensors",
|
| 297 |
+
"model.layers.9.self_attn.v_proj.weight": "model-00002-of-00003.safetensors",
|
| 298 |
+
"model.norm.weight": "model-00003-of-00003.safetensors",
|
| 299 |
+
"vision_tower.blocks.0.0.channel_block.channel_attn.fn.proj.bias": "model-00003-of-00003.safetensors",
|
| 300 |
+
"vision_tower.blocks.0.0.channel_block.channel_attn.fn.proj.weight": "model-00003-of-00003.safetensors",
|
| 301 |
+
"vision_tower.blocks.0.0.channel_block.channel_attn.fn.qkv.bias": "model-00003-of-00003.safetensors",
|
| 302 |
+
"vision_tower.blocks.0.0.channel_block.channel_attn.fn.qkv.weight": "model-00003-of-00003.safetensors",
|
| 303 |
+
"vision_tower.blocks.0.0.channel_block.channel_attn.norm.bias": "model-00003-of-00003.safetensors",
|
| 304 |
+
"vision_tower.blocks.0.0.channel_block.channel_attn.norm.weight": "model-00003-of-00003.safetensors",
|
| 305 |
+
"vision_tower.blocks.0.0.channel_block.conv1.fn.dw.bias": "model-00003-of-00003.safetensors",
|
| 306 |
+
"vision_tower.blocks.0.0.channel_block.conv1.fn.dw.weight": "model-00003-of-00003.safetensors",
|
| 307 |
+
"vision_tower.blocks.0.0.channel_block.conv2.fn.dw.bias": "model-00003-of-00003.safetensors",
|
| 308 |
+
"vision_tower.blocks.0.0.channel_block.conv2.fn.dw.weight": "model-00003-of-00003.safetensors",
|
| 309 |
+
"vision_tower.blocks.0.0.channel_block.ffn.fn.net.fc1.bias": "model-00003-of-00003.safetensors",
|
| 310 |
+
"vision_tower.blocks.0.0.channel_block.ffn.fn.net.fc1.weight": "model-00003-of-00003.safetensors",
|
| 311 |
+
"vision_tower.blocks.0.0.channel_block.ffn.fn.net.fc2.bias": "model-00003-of-00003.safetensors",
|
| 312 |
+
"vision_tower.blocks.0.0.channel_block.ffn.fn.net.fc2.weight": "model-00003-of-00003.safetensors",
|
| 313 |
+
"vision_tower.blocks.0.0.channel_block.ffn.norm.bias": "model-00003-of-00003.safetensors",
|
| 314 |
+
"vision_tower.blocks.0.0.channel_block.ffn.norm.weight": "model-00003-of-00003.safetensors",
|
| 315 |
+
"vision_tower.blocks.0.0.spatial_block.conv1.fn.dw.bias": "model-00003-of-00003.safetensors",
|
| 316 |
+
"vision_tower.blocks.0.0.spatial_block.conv1.fn.dw.weight": "model-00003-of-00003.safetensors",
|
| 317 |
+
"vision_tower.blocks.0.0.spatial_block.conv2.fn.dw.bias": "model-00003-of-00003.safetensors",
|
| 318 |
+
"vision_tower.blocks.0.0.spatial_block.conv2.fn.dw.weight": "model-00003-of-00003.safetensors",
|
| 319 |
+
"vision_tower.blocks.0.0.spatial_block.ffn.fn.net.fc1.bias": "model-00003-of-00003.safetensors",
|
| 320 |
+
"vision_tower.blocks.0.0.spatial_block.ffn.fn.net.fc1.weight": "model-00003-of-00003.safetensors",
|
| 321 |
+
"vision_tower.blocks.0.0.spatial_block.ffn.fn.net.fc2.bias": "model-00003-of-00003.safetensors",
|
| 322 |
+
"vision_tower.blocks.0.0.spatial_block.ffn.fn.net.fc2.weight": "model-00003-of-00003.safetensors",
|
| 323 |
+
"vision_tower.blocks.0.0.spatial_block.ffn.norm.bias": "model-00003-of-00003.safetensors",
|
| 324 |
+
"vision_tower.blocks.0.0.spatial_block.ffn.norm.weight": "model-00003-of-00003.safetensors",
|
| 325 |
+
"vision_tower.blocks.0.0.spatial_block.window_attn.fn.proj.bias": "model-00003-of-00003.safetensors",
|
| 326 |
+
"vision_tower.blocks.0.0.spatial_block.window_attn.fn.proj.weight": "model-00003-of-00003.safetensors",
|
| 327 |
+
"vision_tower.blocks.0.0.spatial_block.window_attn.fn.qkv.bias": "model-00003-of-00003.safetensors",
|
| 328 |
+
"vision_tower.blocks.0.0.spatial_block.window_attn.fn.qkv.weight": "model-00003-of-00003.safetensors",
|
| 329 |
+
"vision_tower.blocks.0.0.spatial_block.window_attn.norm.bias": "model-00003-of-00003.safetensors",
|
| 330 |
+
"vision_tower.blocks.0.0.spatial_block.window_attn.norm.weight": "model-00003-of-00003.safetensors",
|
| 331 |
+
"vision_tower.blocks.1.0.channel_block.channel_attn.fn.proj.bias": "model-00003-of-00003.safetensors",
|
| 332 |
+
"vision_tower.blocks.1.0.channel_block.channel_attn.fn.proj.weight": "model-00003-of-00003.safetensors",
|
| 333 |
+
"vision_tower.blocks.1.0.channel_block.channel_attn.fn.qkv.bias": "model-00003-of-00003.safetensors",
|
| 334 |
+
"vision_tower.blocks.1.0.channel_block.channel_attn.fn.qkv.weight": "model-00003-of-00003.safetensors",
|
| 335 |
+
"vision_tower.blocks.1.0.channel_block.channel_attn.norm.bias": "model-00003-of-00003.safetensors",
|
| 336 |
+
"vision_tower.blocks.1.0.channel_block.channel_attn.norm.weight": "model-00003-of-00003.safetensors",
|
| 337 |
+
"vision_tower.blocks.1.0.channel_block.conv1.fn.dw.bias": "model-00003-of-00003.safetensors",
|
| 338 |
+
"vision_tower.blocks.1.0.channel_block.conv1.fn.dw.weight": "model-00003-of-00003.safetensors",
|
| 339 |
+
"vision_tower.blocks.1.0.channel_block.conv2.fn.dw.bias": "model-00003-of-00003.safetensors",
|
| 340 |
+
"vision_tower.blocks.1.0.channel_block.conv2.fn.dw.weight": "model-00003-of-00003.safetensors",
|
| 341 |
+
"vision_tower.blocks.1.0.channel_block.ffn.fn.net.fc1.bias": "model-00003-of-00003.safetensors",
|
| 342 |
+
"vision_tower.blocks.1.0.channel_block.ffn.fn.net.fc1.weight": "model-00003-of-00003.safetensors",
|
| 343 |
+
"vision_tower.blocks.1.0.channel_block.ffn.fn.net.fc2.bias": "model-00003-of-00003.safetensors",
|
| 344 |
+
"vision_tower.blocks.1.0.channel_block.ffn.fn.net.fc2.weight": "model-00003-of-00003.safetensors",
|
| 345 |
+
"vision_tower.blocks.1.0.channel_block.ffn.norm.bias": "model-00003-of-00003.safetensors",
|
| 346 |
+
"vision_tower.blocks.1.0.channel_block.ffn.norm.weight": "model-00003-of-00003.safetensors",
|
| 347 |
+
"vision_tower.blocks.1.0.spatial_block.conv1.fn.dw.bias": "model-00003-of-00003.safetensors",
|
| 348 |
+
"vision_tower.blocks.1.0.spatial_block.conv1.fn.dw.weight": "model-00003-of-00003.safetensors",
|
| 349 |
+
"vision_tower.blocks.1.0.spatial_block.conv2.fn.dw.bias": "model-00003-of-00003.safetensors",
|
| 350 |
+
"vision_tower.blocks.1.0.spatial_block.conv2.fn.dw.weight": "model-00003-of-00003.safetensors",
|
| 351 |
+
"vision_tower.blocks.1.0.spatial_block.ffn.fn.net.fc1.bias": "model-00003-of-00003.safetensors",
|
| 352 |
+
"vision_tower.blocks.1.0.spatial_block.ffn.fn.net.fc1.weight": "model-00003-of-00003.safetensors",
|
| 353 |
+
"vision_tower.blocks.1.0.spatial_block.ffn.fn.net.fc2.bias": "model-00003-of-00003.safetensors",
|
| 354 |
+
"vision_tower.blocks.1.0.spatial_block.ffn.fn.net.fc2.weight": "model-00003-of-00003.safetensors",
|
| 355 |
+
"vision_tower.blocks.1.0.spatial_block.ffn.norm.bias": "model-00003-of-00003.safetensors",
|
| 356 |
+
"vision_tower.blocks.1.0.spatial_block.ffn.norm.weight": "model-00003-of-00003.safetensors",
|
| 357 |
+
"vision_tower.blocks.1.0.spatial_block.window_attn.fn.proj.bias": "model-00003-of-00003.safetensors",
|
| 358 |
+
"vision_tower.blocks.1.0.spatial_block.window_attn.fn.proj.weight": "model-00003-of-00003.safetensors",
|
| 359 |
+
"vision_tower.blocks.1.0.spatial_block.window_attn.fn.qkv.bias": "model-00003-of-00003.safetensors",
|
| 360 |
+
"vision_tower.blocks.1.0.spatial_block.window_attn.fn.qkv.weight": "model-00003-of-00003.safetensors",
|
| 361 |
+
"vision_tower.blocks.1.0.spatial_block.window_attn.norm.bias": "model-00003-of-00003.safetensors",
|
| 362 |
+
"vision_tower.blocks.1.0.spatial_block.window_attn.norm.weight": "model-00003-of-00003.safetensors",
|
| 363 |
+
"vision_tower.blocks.2.0.channel_block.channel_attn.fn.proj.bias": "model-00003-of-00003.safetensors",
|
| 364 |
+
"vision_tower.blocks.2.0.channel_block.channel_attn.fn.proj.weight": "model-00003-of-00003.safetensors",
|
| 365 |
+
"vision_tower.blocks.2.0.channel_block.channel_attn.fn.qkv.bias": "model-00003-of-00003.safetensors",
|
| 366 |
+
"vision_tower.blocks.2.0.channel_block.channel_attn.fn.qkv.weight": "model-00003-of-00003.safetensors",
|
| 367 |
+
"vision_tower.blocks.2.0.channel_block.channel_attn.norm.bias": "model-00003-of-00003.safetensors",
|
| 368 |
+
"vision_tower.blocks.2.0.channel_block.channel_attn.norm.weight": "model-00003-of-00003.safetensors",
|
| 369 |
+
"vision_tower.blocks.2.0.channel_block.conv1.fn.dw.bias": "model-00003-of-00003.safetensors",
|
| 370 |
+
"vision_tower.blocks.2.0.channel_block.conv1.fn.dw.weight": "model-00003-of-00003.safetensors",
|
| 371 |
+
"vision_tower.blocks.2.0.channel_block.conv2.fn.dw.bias": "model-00003-of-00003.safetensors",
|
| 372 |
+
"vision_tower.blocks.2.0.channel_block.conv2.fn.dw.weight": "model-00003-of-00003.safetensors",
|
| 373 |
+
"vision_tower.blocks.2.0.channel_block.ffn.fn.net.fc1.bias": "model-00003-of-00003.safetensors",
|
| 374 |
+
"vision_tower.blocks.2.0.channel_block.ffn.fn.net.fc1.weight": "model-00003-of-00003.safetensors",
|
| 375 |
+
"vision_tower.blocks.2.0.channel_block.ffn.fn.net.fc2.bias": "model-00003-of-00003.safetensors",
|
| 376 |
+
"vision_tower.blocks.2.0.channel_block.ffn.fn.net.fc2.weight": "model-00003-of-00003.safetensors",
|
| 377 |
+
"vision_tower.blocks.2.0.channel_block.ffn.norm.bias": "model-00003-of-00003.safetensors",
|
| 378 |
+
"vision_tower.blocks.2.0.channel_block.ffn.norm.weight": "model-00003-of-00003.safetensors",
|
| 379 |
+
"vision_tower.blocks.2.0.spatial_block.conv1.fn.dw.bias": "model-00003-of-00003.safetensors",
|
| 380 |
+
"vision_tower.blocks.2.0.spatial_block.conv1.fn.dw.weight": "model-00003-of-00003.safetensors",
|
| 381 |
+
"vision_tower.blocks.2.0.spatial_block.conv2.fn.dw.bias": "model-00003-of-00003.safetensors",
|
| 382 |
+
"vision_tower.blocks.2.0.spatial_block.conv2.fn.dw.weight": "model-00003-of-00003.safetensors",
|
| 383 |
+
"vision_tower.blocks.2.0.spatial_block.ffn.fn.net.fc1.bias": "model-00003-of-00003.safetensors",
|
| 384 |
+
"vision_tower.blocks.2.0.spatial_block.ffn.fn.net.fc1.weight": "model-00003-of-00003.safetensors",
|
| 385 |
+
"vision_tower.blocks.2.0.spatial_block.ffn.fn.net.fc2.bias": "model-00003-of-00003.safetensors",
|
| 386 |
+
"vision_tower.blocks.2.0.spatial_block.ffn.fn.net.fc2.weight": "model-00003-of-00003.safetensors",
|
| 387 |
+
"vision_tower.blocks.2.0.spatial_block.ffn.norm.bias": "model-00003-of-00003.safetensors",
|
| 388 |
+
"vision_tower.blocks.2.0.spatial_block.ffn.norm.weight": "model-00003-of-00003.safetensors",
|
| 389 |
+
"vision_tower.blocks.2.0.spatial_block.window_attn.fn.proj.bias": "model-00003-of-00003.safetensors",
|
| 390 |
+
"vision_tower.blocks.2.0.spatial_block.window_attn.fn.proj.weight": "model-00003-of-00003.safetensors",
|
| 391 |
+
"vision_tower.blocks.2.0.spatial_block.window_attn.fn.qkv.bias": "model-00003-of-00003.safetensors",
|
| 392 |
+
"vision_tower.blocks.2.0.spatial_block.window_attn.fn.qkv.weight": "model-00003-of-00003.safetensors",
|
| 393 |
+
"vision_tower.blocks.2.0.spatial_block.window_attn.norm.bias": "model-00003-of-00003.safetensors",
|
| 394 |
+
"vision_tower.blocks.2.0.spatial_block.window_attn.norm.weight": "model-00003-of-00003.safetensors",
|
| 395 |
+
"vision_tower.blocks.2.1.channel_block.channel_attn.fn.proj.bias": "model-00003-of-00003.safetensors",
|
| 396 |
+
"vision_tower.blocks.2.1.channel_block.channel_attn.fn.proj.weight": "model-00003-of-00003.safetensors",
|
| 397 |
+
"vision_tower.blocks.2.1.channel_block.channel_attn.fn.qkv.bias": "model-00003-of-00003.safetensors",
|
| 398 |
+
"vision_tower.blocks.2.1.channel_block.channel_attn.fn.qkv.weight": "model-00003-of-00003.safetensors",
|
| 399 |
+
"vision_tower.blocks.2.1.channel_block.channel_attn.norm.bias": "model-00003-of-00003.safetensors",
|
| 400 |
+
"vision_tower.blocks.2.1.channel_block.channel_attn.norm.weight": "model-00003-of-00003.safetensors",
|
| 401 |
+
"vision_tower.blocks.2.1.channel_block.conv1.fn.dw.bias": "model-00003-of-00003.safetensors",
|
| 402 |
+
"vision_tower.blocks.2.1.channel_block.conv1.fn.dw.weight": "model-00003-of-00003.safetensors",
|
| 403 |
+
"vision_tower.blocks.2.1.channel_block.conv2.fn.dw.bias": "model-00003-of-00003.safetensors",
|
| 404 |
+
"vision_tower.blocks.2.1.channel_block.conv2.fn.dw.weight": "model-00003-of-00003.safetensors",
|
| 405 |
+
"vision_tower.blocks.2.1.channel_block.ffn.fn.net.fc1.bias": "model-00003-of-00003.safetensors",
|
| 406 |
+
"vision_tower.blocks.2.1.channel_block.ffn.fn.net.fc1.weight": "model-00003-of-00003.safetensors",
|
| 407 |
+
"vision_tower.blocks.2.1.channel_block.ffn.fn.net.fc2.bias": "model-00003-of-00003.safetensors",
|
| 408 |
+
"vision_tower.blocks.2.1.channel_block.ffn.fn.net.fc2.weight": "model-00003-of-00003.safetensors",
|
| 409 |
+
"vision_tower.blocks.2.1.channel_block.ffn.norm.bias": "model-00003-of-00003.safetensors",
|
| 410 |
+
"vision_tower.blocks.2.1.channel_block.ffn.norm.weight": "model-00003-of-00003.safetensors",
|
| 411 |
+
"vision_tower.blocks.2.1.spatial_block.conv1.fn.dw.bias": "model-00003-of-00003.safetensors",
|
| 412 |
+
"vision_tower.blocks.2.1.spatial_block.conv1.fn.dw.weight": "model-00003-of-00003.safetensors",
|
| 413 |
+
"vision_tower.blocks.2.1.spatial_block.conv2.fn.dw.bias": "model-00003-of-00003.safetensors",
|
| 414 |
+
"vision_tower.blocks.2.1.spatial_block.conv2.fn.dw.weight": "model-00003-of-00003.safetensors",
|
| 415 |
+
"vision_tower.blocks.2.1.spatial_block.ffn.fn.net.fc1.bias": "model-00003-of-00003.safetensors",
|
| 416 |
+
"vision_tower.blocks.2.1.spatial_block.ffn.fn.net.fc1.weight": "model-00003-of-00003.safetensors",
|
| 417 |
+
"vision_tower.blocks.2.1.spatial_block.ffn.fn.net.fc2.bias": "model-00003-of-00003.safetensors",
|
| 418 |
+
"vision_tower.blocks.2.1.spatial_block.ffn.fn.net.fc2.weight": "model-00003-of-00003.safetensors",
|
| 419 |
+
"vision_tower.blocks.2.1.spatial_block.ffn.norm.bias": "model-00003-of-00003.safetensors",
|
| 420 |
+
"vision_tower.blocks.2.1.spatial_block.ffn.norm.weight": "model-00003-of-00003.safetensors",
|
| 421 |
+
"vision_tower.blocks.2.1.spatial_block.window_attn.fn.proj.bias": "model-00003-of-00003.safetensors",
|
| 422 |
+
"vision_tower.blocks.2.1.spatial_block.window_attn.fn.proj.weight": "model-00003-of-00003.safetensors",
|
| 423 |
+
"vision_tower.blocks.2.1.spatial_block.window_attn.fn.qkv.bias": "model-00003-of-00003.safetensors",
|
| 424 |
+
"vision_tower.blocks.2.1.spatial_block.window_attn.fn.qkv.weight": "model-00003-of-00003.safetensors",
|
| 425 |
+
"vision_tower.blocks.2.1.spatial_block.window_attn.norm.bias": "model-00003-of-00003.safetensors",
|
| 426 |
+
"vision_tower.blocks.2.1.spatial_block.window_attn.norm.weight": "model-00003-of-00003.safetensors",
|
| 427 |
+
"vision_tower.blocks.2.2.channel_block.channel_attn.fn.proj.bias": "model-00003-of-00003.safetensors",
|
| 428 |
+
"vision_tower.blocks.2.2.channel_block.channel_attn.fn.proj.weight": "model-00003-of-00003.safetensors",
|
| 429 |
+
"vision_tower.blocks.2.2.channel_block.channel_attn.fn.qkv.bias": "model-00003-of-00003.safetensors",
|
| 430 |
+
"vision_tower.blocks.2.2.channel_block.channel_attn.fn.qkv.weight": "model-00003-of-00003.safetensors",
|
| 431 |
+
"vision_tower.blocks.2.2.channel_block.channel_attn.norm.bias": "model-00003-of-00003.safetensors",
|
| 432 |
+
"vision_tower.blocks.2.2.channel_block.channel_attn.norm.weight": "model-00003-of-00003.safetensors",
|
| 433 |
+
"vision_tower.blocks.2.2.channel_block.conv1.fn.dw.bias": "model-00003-of-00003.safetensors",
|
| 434 |
+
"vision_tower.blocks.2.2.channel_block.conv1.fn.dw.weight": "model-00003-of-00003.safetensors",
|
| 435 |
+
"vision_tower.blocks.2.2.channel_block.conv2.fn.dw.bias": "model-00003-of-00003.safetensors",
|
| 436 |
+
"vision_tower.blocks.2.2.channel_block.conv2.fn.dw.weight": "model-00003-of-00003.safetensors",
|
| 437 |
+
"vision_tower.blocks.2.2.channel_block.ffn.fn.net.fc1.bias": "model-00003-of-00003.safetensors",
|
| 438 |
+
"vision_tower.blocks.2.2.channel_block.ffn.fn.net.fc1.weight": "model-00003-of-00003.safetensors",
|
| 439 |
+
"vision_tower.blocks.2.2.channel_block.ffn.fn.net.fc2.bias": "model-00003-of-00003.safetensors",
|
| 440 |
+
"vision_tower.blocks.2.2.channel_block.ffn.fn.net.fc2.weight": "model-00003-of-00003.safetensors",
|
| 441 |
+
"vision_tower.blocks.2.2.channel_block.ffn.norm.bias": "model-00003-of-00003.safetensors",
|
| 442 |
+
"vision_tower.blocks.2.2.channel_block.ffn.norm.weight": "model-00003-of-00003.safetensors",
|
| 443 |
+
"vision_tower.blocks.2.2.spatial_block.conv1.fn.dw.bias": "model-00003-of-00003.safetensors",
|
| 444 |
+
"vision_tower.blocks.2.2.spatial_block.conv1.fn.dw.weight": "model-00003-of-00003.safetensors",
|
| 445 |
+
"vision_tower.blocks.2.2.spatial_block.conv2.fn.dw.bias": "model-00003-of-00003.safetensors",
|
| 446 |
+
"vision_tower.blocks.2.2.spatial_block.conv2.fn.dw.weight": "model-00003-of-00003.safetensors",
|
| 447 |
+
"vision_tower.blocks.2.2.spatial_block.ffn.fn.net.fc1.bias": "model-00003-of-00003.safetensors",
|
| 448 |
+
"vision_tower.blocks.2.2.spatial_block.ffn.fn.net.fc1.weight": "model-00003-of-00003.safetensors",
|
| 449 |
+
"vision_tower.blocks.2.2.spatial_block.ffn.fn.net.fc2.bias": "model-00003-of-00003.safetensors",
|
| 450 |
+
"vision_tower.blocks.2.2.spatial_block.ffn.fn.net.fc2.weight": "model-00003-of-00003.safetensors",
|
| 451 |
+
"vision_tower.blocks.2.2.spatial_block.ffn.norm.bias": "model-00003-of-00003.safetensors",
|
| 452 |
+
"vision_tower.blocks.2.2.spatial_block.ffn.norm.weight": "model-00003-of-00003.safetensors",
|
| 453 |
+
"vision_tower.blocks.2.2.spatial_block.window_attn.fn.proj.bias": "model-00003-of-00003.safetensors",
|
| 454 |
+
"vision_tower.blocks.2.2.spatial_block.window_attn.fn.proj.weight": "model-00003-of-00003.safetensors",
|
| 455 |
+
"vision_tower.blocks.2.2.spatial_block.window_attn.fn.qkv.bias": "model-00003-of-00003.safetensors",
|
| 456 |
+
"vision_tower.blocks.2.2.spatial_block.window_attn.fn.qkv.weight": "model-00003-of-00003.safetensors",
|
| 457 |
+
"vision_tower.blocks.2.2.spatial_block.window_attn.norm.bias": "model-00003-of-00003.safetensors",
|
| 458 |
+
"vision_tower.blocks.2.2.spatial_block.window_attn.norm.weight": "model-00003-of-00003.safetensors",
|
| 459 |
+
"vision_tower.blocks.2.3.channel_block.channel_attn.fn.proj.bias": "model-00003-of-00003.safetensors",
|
| 460 |
+
"vision_tower.blocks.2.3.channel_block.channel_attn.fn.proj.weight": "model-00003-of-00003.safetensors",
|
| 461 |
+
"vision_tower.blocks.2.3.channel_block.channel_attn.fn.qkv.bias": "model-00003-of-00003.safetensors",
|
| 462 |
+
"vision_tower.blocks.2.3.channel_block.channel_attn.fn.qkv.weight": "model-00003-of-00003.safetensors",
|
| 463 |
+
"vision_tower.blocks.2.3.channel_block.channel_attn.norm.bias": "model-00003-of-00003.safetensors",
|
| 464 |
+
"vision_tower.blocks.2.3.channel_block.channel_attn.norm.weight": "model-00003-of-00003.safetensors",
|
| 465 |
+
"vision_tower.blocks.2.3.channel_block.conv1.fn.dw.bias": "model-00003-of-00003.safetensors",
|
| 466 |
+
"vision_tower.blocks.2.3.channel_block.conv1.fn.dw.weight": "model-00003-of-00003.safetensors",
|
| 467 |
+
"vision_tower.blocks.2.3.channel_block.conv2.fn.dw.bias": "model-00003-of-00003.safetensors",
|
| 468 |
+
"vision_tower.blocks.2.3.channel_block.conv2.fn.dw.weight": "model-00003-of-00003.safetensors",
|
| 469 |
+
"vision_tower.blocks.2.3.channel_block.ffn.fn.net.fc1.bias": "model-00003-of-00003.safetensors",
|
| 470 |
+
"vision_tower.blocks.2.3.channel_block.ffn.fn.net.fc1.weight": "model-00003-of-00003.safetensors",
|
| 471 |
+
"vision_tower.blocks.2.3.channel_block.ffn.fn.net.fc2.bias": "model-00003-of-00003.safetensors",
|
| 472 |
+
"vision_tower.blocks.2.3.channel_block.ffn.fn.net.fc2.weight": "model-00003-of-00003.safetensors",
|
| 473 |
+
"vision_tower.blocks.2.3.channel_block.ffn.norm.bias": "model-00003-of-00003.safetensors",
|
| 474 |
+
"vision_tower.blocks.2.3.channel_block.ffn.norm.weight": "model-00003-of-00003.safetensors",
|
| 475 |
+
"vision_tower.blocks.2.3.spatial_block.conv1.fn.dw.bias": "model-00003-of-00003.safetensors",
|
| 476 |
+
"vision_tower.blocks.2.3.spatial_block.conv1.fn.dw.weight": "model-00003-of-00003.safetensors",
|
| 477 |
+
"vision_tower.blocks.2.3.spatial_block.conv2.fn.dw.bias": "model-00003-of-00003.safetensors",
|
| 478 |
+
"vision_tower.blocks.2.3.spatial_block.conv2.fn.dw.weight": "model-00003-of-00003.safetensors",
|
| 479 |
+
"vision_tower.blocks.2.3.spatial_block.ffn.fn.net.fc1.bias": "model-00003-of-00003.safetensors",
|
| 480 |
+
"vision_tower.blocks.2.3.spatial_block.ffn.fn.net.fc1.weight": "model-00003-of-00003.safetensors",
|
| 481 |
+
"vision_tower.blocks.2.3.spatial_block.ffn.fn.net.fc2.bias": "model-00003-of-00003.safetensors",
|
| 482 |
+
"vision_tower.blocks.2.3.spatial_block.ffn.fn.net.fc2.weight": "model-00003-of-00003.safetensors",
|
| 483 |
+
"vision_tower.blocks.2.3.spatial_block.ffn.norm.bias": "model-00003-of-00003.safetensors",
|
| 484 |
+
"vision_tower.blocks.2.3.spatial_block.ffn.norm.weight": "model-00003-of-00003.safetensors",
|
| 485 |
+
"vision_tower.blocks.2.3.spatial_block.window_attn.fn.proj.bias": "model-00003-of-00003.safetensors",
|
| 486 |
+
"vision_tower.blocks.2.3.spatial_block.window_attn.fn.proj.weight": "model-00003-of-00003.safetensors",
|
| 487 |
+
"vision_tower.blocks.2.3.spatial_block.window_attn.fn.qkv.bias": "model-00003-of-00003.safetensors",
|
| 488 |
+
"vision_tower.blocks.2.3.spatial_block.window_attn.fn.qkv.weight": "model-00003-of-00003.safetensors",
|
| 489 |
+
"vision_tower.blocks.2.3.spatial_block.window_attn.norm.bias": "model-00003-of-00003.safetensors",
|
| 490 |
+
"vision_tower.blocks.2.3.spatial_block.window_attn.norm.weight": "model-00003-of-00003.safetensors",
|
| 491 |
+
"vision_tower.blocks.2.4.channel_block.channel_attn.fn.proj.bias": "model-00003-of-00003.safetensors",
|
| 492 |
+
"vision_tower.blocks.2.4.channel_block.channel_attn.fn.proj.weight": "model-00003-of-00003.safetensors",
|
| 493 |
+
"vision_tower.blocks.2.4.channel_block.channel_attn.fn.qkv.bias": "model-00003-of-00003.safetensors",
|
| 494 |
+
"vision_tower.blocks.2.4.channel_block.channel_attn.fn.qkv.weight": "model-00003-of-00003.safetensors",
|
| 495 |
+
"vision_tower.blocks.2.4.channel_block.channel_attn.norm.bias": "model-00003-of-00003.safetensors",
|
| 496 |
+
"vision_tower.blocks.2.4.channel_block.channel_attn.norm.weight": "model-00003-of-00003.safetensors",
|
| 497 |
+
"vision_tower.blocks.2.4.channel_block.conv1.fn.dw.bias": "model-00003-of-00003.safetensors",
|
| 498 |
+
"vision_tower.blocks.2.4.channel_block.conv1.fn.dw.weight": "model-00003-of-00003.safetensors",
|
| 499 |
+
"vision_tower.blocks.2.4.channel_block.conv2.fn.dw.bias": "model-00003-of-00003.safetensors",
|
| 500 |
+
"vision_tower.blocks.2.4.channel_block.conv2.fn.dw.weight": "model-00003-of-00003.safetensors",
|
| 501 |
+
"vision_tower.blocks.2.4.channel_block.ffn.fn.net.fc1.bias": "model-00003-of-00003.safetensors",
|
| 502 |
+
"vision_tower.blocks.2.4.channel_block.ffn.fn.net.fc1.weight": "model-00003-of-00003.safetensors",
|
| 503 |
+
"vision_tower.blocks.2.4.channel_block.ffn.fn.net.fc2.bias": "model-00003-of-00003.safetensors",
|
| 504 |
+
"vision_tower.blocks.2.4.channel_block.ffn.fn.net.fc2.weight": "model-00003-of-00003.safetensors",
|
| 505 |
+
"vision_tower.blocks.2.4.channel_block.ffn.norm.bias": "model-00003-of-00003.safetensors",
|
| 506 |
+
"vision_tower.blocks.2.4.channel_block.ffn.norm.weight": "model-00003-of-00003.safetensors",
|
| 507 |
+
"vision_tower.blocks.2.4.spatial_block.conv1.fn.dw.bias": "model-00003-of-00003.safetensors",
|
| 508 |
+
"vision_tower.blocks.2.4.spatial_block.conv1.fn.dw.weight": "model-00003-of-00003.safetensors",
|
| 509 |
+
"vision_tower.blocks.2.4.spatial_block.conv2.fn.dw.bias": "model-00003-of-00003.safetensors",
|
| 510 |
+
"vision_tower.blocks.2.4.spatial_block.conv2.fn.dw.weight": "model-00003-of-00003.safetensors",
|
| 511 |
+
"vision_tower.blocks.2.4.spatial_block.ffn.fn.net.fc1.bias": "model-00003-of-00003.safetensors",
|
| 512 |
+
"vision_tower.blocks.2.4.spatial_block.ffn.fn.net.fc1.weight": "model-00003-of-00003.safetensors",
|
| 513 |
+
"vision_tower.blocks.2.4.spatial_block.ffn.fn.net.fc2.bias": "model-00003-of-00003.safetensors",
|
| 514 |
+
"vision_tower.blocks.2.4.spatial_block.ffn.fn.net.fc2.weight": "model-00003-of-00003.safetensors",
|
| 515 |
+
"vision_tower.blocks.2.4.spatial_block.ffn.norm.bias": "model-00003-of-00003.safetensors",
|
| 516 |
+
"vision_tower.blocks.2.4.spatial_block.ffn.norm.weight": "model-00003-of-00003.safetensors",
|
| 517 |
+
"vision_tower.blocks.2.4.spatial_block.window_attn.fn.proj.bias": "model-00003-of-00003.safetensors",
|
| 518 |
+
"vision_tower.blocks.2.4.spatial_block.window_attn.fn.proj.weight": "model-00003-of-00003.safetensors",
|
| 519 |
+
"vision_tower.blocks.2.4.spatial_block.window_attn.fn.qkv.bias": "model-00003-of-00003.safetensors",
|
| 520 |
+
"vision_tower.blocks.2.4.spatial_block.window_attn.fn.qkv.weight": "model-00003-of-00003.safetensors",
|
| 521 |
+
"vision_tower.blocks.2.4.spatial_block.window_attn.norm.bias": "model-00003-of-00003.safetensors",
|
| 522 |
+
"vision_tower.blocks.2.4.spatial_block.window_attn.norm.weight": "model-00003-of-00003.safetensors",
|
| 523 |
+
"vision_tower.blocks.2.5.channel_block.channel_attn.fn.proj.bias": "model-00003-of-00003.safetensors",
|
| 524 |
+
"vision_tower.blocks.2.5.channel_block.channel_attn.fn.proj.weight": "model-00003-of-00003.safetensors",
|
| 525 |
+
"vision_tower.blocks.2.5.channel_block.channel_attn.fn.qkv.bias": "model-00003-of-00003.safetensors",
|
| 526 |
+
"vision_tower.blocks.2.5.channel_block.channel_attn.fn.qkv.weight": "model-00003-of-00003.safetensors",
|
| 527 |
+
"vision_tower.blocks.2.5.channel_block.channel_attn.norm.bias": "model-00003-of-00003.safetensors",
|
| 528 |
+
"vision_tower.blocks.2.5.channel_block.channel_attn.norm.weight": "model-00003-of-00003.safetensors",
|
| 529 |
+
"vision_tower.blocks.2.5.channel_block.conv1.fn.dw.bias": "model-00003-of-00003.safetensors",
|
| 530 |
+
"vision_tower.blocks.2.5.channel_block.conv1.fn.dw.weight": "model-00003-of-00003.safetensors",
|
| 531 |
+
"vision_tower.blocks.2.5.channel_block.conv2.fn.dw.bias": "model-00003-of-00003.safetensors",
|
| 532 |
+
"vision_tower.blocks.2.5.channel_block.conv2.fn.dw.weight": "model-00003-of-00003.safetensors",
|
| 533 |
+
"vision_tower.blocks.2.5.channel_block.ffn.fn.net.fc1.bias": "model-00003-of-00003.safetensors",
|
| 534 |
+
"vision_tower.blocks.2.5.channel_block.ffn.fn.net.fc1.weight": "model-00003-of-00003.safetensors",
|
| 535 |
+
"vision_tower.blocks.2.5.channel_block.ffn.fn.net.fc2.bias": "model-00003-of-00003.safetensors",
|
| 536 |
+
"vision_tower.blocks.2.5.channel_block.ffn.fn.net.fc2.weight": "model-00003-of-00003.safetensors",
|
| 537 |
+
"vision_tower.blocks.2.5.channel_block.ffn.norm.bias": "model-00003-of-00003.safetensors",
|
| 538 |
+
"vision_tower.blocks.2.5.channel_block.ffn.norm.weight": "model-00003-of-00003.safetensors",
|
| 539 |
+
"vision_tower.blocks.2.5.spatial_block.conv1.fn.dw.bias": "model-00003-of-00003.safetensors",
|
| 540 |
+
"vision_tower.blocks.2.5.spatial_block.conv1.fn.dw.weight": "model-00003-of-00003.safetensors",
|
| 541 |
+
"vision_tower.blocks.2.5.spatial_block.conv2.fn.dw.bias": "model-00003-of-00003.safetensors",
|
| 542 |
+
"vision_tower.blocks.2.5.spatial_block.conv2.fn.dw.weight": "model-00003-of-00003.safetensors",
|
| 543 |
+
"vision_tower.blocks.2.5.spatial_block.ffn.fn.net.fc1.bias": "model-00003-of-00003.safetensors",
|
| 544 |
+
"vision_tower.blocks.2.5.spatial_block.ffn.fn.net.fc1.weight": "model-00003-of-00003.safetensors",
|
| 545 |
+
"vision_tower.blocks.2.5.spatial_block.ffn.fn.net.fc2.bias": "model-00003-of-00003.safetensors",
|
| 546 |
+
"vision_tower.blocks.2.5.spatial_block.ffn.fn.net.fc2.weight": "model-00003-of-00003.safetensors",
|
| 547 |
+
"vision_tower.blocks.2.5.spatial_block.ffn.norm.bias": "model-00003-of-00003.safetensors",
|
| 548 |
+
"vision_tower.blocks.2.5.spatial_block.ffn.norm.weight": "model-00003-of-00003.safetensors",
|
| 549 |
+
"vision_tower.blocks.2.5.spatial_block.window_attn.fn.proj.bias": "model-00003-of-00003.safetensors",
|
| 550 |
+
"vision_tower.blocks.2.5.spatial_block.window_attn.fn.proj.weight": "model-00003-of-00003.safetensors",
|
| 551 |
+
"vision_tower.blocks.2.5.spatial_block.window_attn.fn.qkv.bias": "model-00003-of-00003.safetensors",
|
| 552 |
+
"vision_tower.blocks.2.5.spatial_block.window_attn.fn.qkv.weight": "model-00003-of-00003.safetensors",
|
| 553 |
+
"vision_tower.blocks.2.5.spatial_block.window_attn.norm.bias": "model-00003-of-00003.safetensors",
|
| 554 |
+
"vision_tower.blocks.2.5.spatial_block.window_attn.norm.weight": "model-00003-of-00003.safetensors",
|
| 555 |
+
"vision_tower.blocks.2.6.channel_block.channel_attn.fn.proj.bias": "model-00003-of-00003.safetensors",
|
| 556 |
+
"vision_tower.blocks.2.6.channel_block.channel_attn.fn.proj.weight": "model-00003-of-00003.safetensors",
|
| 557 |
+
"vision_tower.blocks.2.6.channel_block.channel_attn.fn.qkv.bias": "model-00003-of-00003.safetensors",
|
| 558 |
+
"vision_tower.blocks.2.6.channel_block.channel_attn.fn.qkv.weight": "model-00003-of-00003.safetensors",
|
| 559 |
+
"vision_tower.blocks.2.6.channel_block.channel_attn.norm.bias": "model-00003-of-00003.safetensors",
|
| 560 |
+
"vision_tower.blocks.2.6.channel_block.channel_attn.norm.weight": "model-00003-of-00003.safetensors",
|
| 561 |
+
"vision_tower.blocks.2.6.channel_block.conv1.fn.dw.bias": "model-00003-of-00003.safetensors",
|
| 562 |
+
"vision_tower.blocks.2.6.channel_block.conv1.fn.dw.weight": "model-00003-of-00003.safetensors",
|
| 563 |
+
"vision_tower.blocks.2.6.channel_block.conv2.fn.dw.bias": "model-00003-of-00003.safetensors",
|
| 564 |
+
"vision_tower.blocks.2.6.channel_block.conv2.fn.dw.weight": "model-00003-of-00003.safetensors",
|
| 565 |
+
"vision_tower.blocks.2.6.channel_block.ffn.fn.net.fc1.bias": "model-00003-of-00003.safetensors",
|
| 566 |
+
"vision_tower.blocks.2.6.channel_block.ffn.fn.net.fc1.weight": "model-00003-of-00003.safetensors",
|
| 567 |
+
"vision_tower.blocks.2.6.channel_block.ffn.fn.net.fc2.bias": "model-00003-of-00003.safetensors",
|
| 568 |
+
"vision_tower.blocks.2.6.channel_block.ffn.fn.net.fc2.weight": "model-00003-of-00003.safetensors",
|
| 569 |
+
"vision_tower.blocks.2.6.channel_block.ffn.norm.bias": "model-00003-of-00003.safetensors",
|
| 570 |
+
"vision_tower.blocks.2.6.channel_block.ffn.norm.weight": "model-00003-of-00003.safetensors",
|
| 571 |
+
"vision_tower.blocks.2.6.spatial_block.conv1.fn.dw.bias": "model-00003-of-00003.safetensors",
|
| 572 |
+
"vision_tower.blocks.2.6.spatial_block.conv1.fn.dw.weight": "model-00003-of-00003.safetensors",
|
| 573 |
+
"vision_tower.blocks.2.6.spatial_block.conv2.fn.dw.bias": "model-00003-of-00003.safetensors",
|
| 574 |
+
"vision_tower.blocks.2.6.spatial_block.conv2.fn.dw.weight": "model-00003-of-00003.safetensors",
|
| 575 |
+
"vision_tower.blocks.2.6.spatial_block.ffn.fn.net.fc1.bias": "model-00003-of-00003.safetensors",
|
| 576 |
+
"vision_tower.blocks.2.6.spatial_block.ffn.fn.net.fc1.weight": "model-00003-of-00003.safetensors",
|
| 577 |
+
"vision_tower.blocks.2.6.spatial_block.ffn.fn.net.fc2.bias": "model-00003-of-00003.safetensors",
|
| 578 |
+
"vision_tower.blocks.2.6.spatial_block.ffn.fn.net.fc2.weight": "model-00003-of-00003.safetensors",
|
| 579 |
+
"vision_tower.blocks.2.6.spatial_block.ffn.norm.bias": "model-00003-of-00003.safetensors",
|
| 580 |
+
"vision_tower.blocks.2.6.spatial_block.ffn.norm.weight": "model-00003-of-00003.safetensors",
|
| 581 |
+
"vision_tower.blocks.2.6.spatial_block.window_attn.fn.proj.bias": "model-00003-of-00003.safetensors",
|
| 582 |
+
"vision_tower.blocks.2.6.spatial_block.window_attn.fn.proj.weight": "model-00003-of-00003.safetensors",
|
| 583 |
+
"vision_tower.blocks.2.6.spatial_block.window_attn.fn.qkv.bias": "model-00003-of-00003.safetensors",
|
| 584 |
+
"vision_tower.blocks.2.6.spatial_block.window_attn.fn.qkv.weight": "model-00003-of-00003.safetensors",
|
| 585 |
+
"vision_tower.blocks.2.6.spatial_block.window_attn.norm.bias": "model-00003-of-00003.safetensors",
|
| 586 |
+
"vision_tower.blocks.2.6.spatial_block.window_attn.norm.weight": "model-00003-of-00003.safetensors",
|
| 587 |
+
"vision_tower.blocks.2.7.channel_block.channel_attn.fn.proj.bias": "model-00003-of-00003.safetensors",
|
| 588 |
+
"vision_tower.blocks.2.7.channel_block.channel_attn.fn.proj.weight": "model-00003-of-00003.safetensors",
|
| 589 |
+
"vision_tower.blocks.2.7.channel_block.channel_attn.fn.qkv.bias": "model-00003-of-00003.safetensors",
|
| 590 |
+
"vision_tower.blocks.2.7.channel_block.channel_attn.fn.qkv.weight": "model-00003-of-00003.safetensors",
|
| 591 |
+
"vision_tower.blocks.2.7.channel_block.channel_attn.norm.bias": "model-00003-of-00003.safetensors",
|
| 592 |
+
"vision_tower.blocks.2.7.channel_block.channel_attn.norm.weight": "model-00003-of-00003.safetensors",
|
| 593 |
+
"vision_tower.blocks.2.7.channel_block.conv1.fn.dw.bias": "model-00003-of-00003.safetensors",
|
| 594 |
+
"vision_tower.blocks.2.7.channel_block.conv1.fn.dw.weight": "model-00003-of-00003.safetensors",
|
| 595 |
+
"vision_tower.blocks.2.7.channel_block.conv2.fn.dw.bias": "model-00003-of-00003.safetensors",
|
| 596 |
+
"vision_tower.blocks.2.7.channel_block.conv2.fn.dw.weight": "model-00003-of-00003.safetensors",
|
| 597 |
+
"vision_tower.blocks.2.7.channel_block.ffn.fn.net.fc1.bias": "model-00003-of-00003.safetensors",
|
| 598 |
+
"vision_tower.blocks.2.7.channel_block.ffn.fn.net.fc1.weight": "model-00003-of-00003.safetensors",
|
| 599 |
+
"vision_tower.blocks.2.7.channel_block.ffn.fn.net.fc2.bias": "model-00003-of-00003.safetensors",
|
| 600 |
+
"vision_tower.blocks.2.7.channel_block.ffn.fn.net.fc2.weight": "model-00003-of-00003.safetensors",
|
| 601 |
+
"vision_tower.blocks.2.7.channel_block.ffn.norm.bias": "model-00003-of-00003.safetensors",
|
| 602 |
+
"vision_tower.blocks.2.7.channel_block.ffn.norm.weight": "model-00003-of-00003.safetensors",
|
| 603 |
+
"vision_tower.blocks.2.7.spatial_block.conv1.fn.dw.bias": "model-00003-of-00003.safetensors",
|
| 604 |
+
"vision_tower.blocks.2.7.spatial_block.conv1.fn.dw.weight": "model-00003-of-00003.safetensors",
|
| 605 |
+
"vision_tower.blocks.2.7.spatial_block.conv2.fn.dw.bias": "model-00003-of-00003.safetensors",
|
| 606 |
+
"vision_tower.blocks.2.7.spatial_block.conv2.fn.dw.weight": "model-00003-of-00003.safetensors",
|
| 607 |
+
"vision_tower.blocks.2.7.spatial_block.ffn.fn.net.fc1.bias": "model-00003-of-00003.safetensors",
|
| 608 |
+
"vision_tower.blocks.2.7.spatial_block.ffn.fn.net.fc1.weight": "model-00003-of-00003.safetensors",
|
| 609 |
+
"vision_tower.blocks.2.7.spatial_block.ffn.fn.net.fc2.bias": "model-00003-of-00003.safetensors",
|
| 610 |
+
"vision_tower.blocks.2.7.spatial_block.ffn.fn.net.fc2.weight": "model-00003-of-00003.safetensors",
|
| 611 |
+
"vision_tower.blocks.2.7.spatial_block.ffn.norm.bias": "model-00003-of-00003.safetensors",
|
| 612 |
+
"vision_tower.blocks.2.7.spatial_block.ffn.norm.weight": "model-00003-of-00003.safetensors",
|
| 613 |
+
"vision_tower.blocks.2.7.spatial_block.window_attn.fn.proj.bias": "model-00003-of-00003.safetensors",
|
| 614 |
+
"vision_tower.blocks.2.7.spatial_block.window_attn.fn.proj.weight": "model-00003-of-00003.safetensors",
|
| 615 |
+
"vision_tower.blocks.2.7.spatial_block.window_attn.fn.qkv.bias": "model-00003-of-00003.safetensors",
|
| 616 |
+
"vision_tower.blocks.2.7.spatial_block.window_attn.fn.qkv.weight": "model-00003-of-00003.safetensors",
|
| 617 |
+
"vision_tower.blocks.2.7.spatial_block.window_attn.norm.bias": "model-00003-of-00003.safetensors",
|
| 618 |
+
"vision_tower.blocks.2.7.spatial_block.window_attn.norm.weight": "model-00003-of-00003.safetensors",
|
| 619 |
+
"vision_tower.blocks.2.8.channel_block.channel_attn.fn.proj.bias": "model-00003-of-00003.safetensors",
|
| 620 |
+
"vision_tower.blocks.2.8.channel_block.channel_attn.fn.proj.weight": "model-00003-of-00003.safetensors",
|
| 621 |
+
"vision_tower.blocks.2.8.channel_block.channel_attn.fn.qkv.bias": "model-00003-of-00003.safetensors",
|
| 622 |
+
"vision_tower.blocks.2.8.channel_block.channel_attn.fn.qkv.weight": "model-00003-of-00003.safetensors",
|
| 623 |
+
"vision_tower.blocks.2.8.channel_block.channel_attn.norm.bias": "model-00003-of-00003.safetensors",
|
| 624 |
+
"vision_tower.blocks.2.8.channel_block.channel_attn.norm.weight": "model-00003-of-00003.safetensors",
|
| 625 |
+
"vision_tower.blocks.2.8.channel_block.conv1.fn.dw.bias": "model-00003-of-00003.safetensors",
|
| 626 |
+
"vision_tower.blocks.2.8.channel_block.conv1.fn.dw.weight": "model-00003-of-00003.safetensors",
|
| 627 |
+
"vision_tower.blocks.2.8.channel_block.conv2.fn.dw.bias": "model-00003-of-00003.safetensors",
|
| 628 |
+
"vision_tower.blocks.2.8.channel_block.conv2.fn.dw.weight": "model-00003-of-00003.safetensors",
|
| 629 |
+
"vision_tower.blocks.2.8.channel_block.ffn.fn.net.fc1.bias": "model-00003-of-00003.safetensors",
|
| 630 |
+
"vision_tower.blocks.2.8.channel_block.ffn.fn.net.fc1.weight": "model-00003-of-00003.safetensors",
|
| 631 |
+
"vision_tower.blocks.2.8.channel_block.ffn.fn.net.fc2.bias": "model-00003-of-00003.safetensors",
|
| 632 |
+
"vision_tower.blocks.2.8.channel_block.ffn.fn.net.fc2.weight": "model-00003-of-00003.safetensors",
|
| 633 |
+
"vision_tower.blocks.2.8.channel_block.ffn.norm.bias": "model-00003-of-00003.safetensors",
|
| 634 |
+
"vision_tower.blocks.2.8.channel_block.ffn.norm.weight": "model-00003-of-00003.safetensors",
|
| 635 |
+
"vision_tower.blocks.2.8.spatial_block.conv1.fn.dw.bias": "model-00003-of-00003.safetensors",
|
| 636 |
+
"vision_tower.blocks.2.8.spatial_block.conv1.fn.dw.weight": "model-00003-of-00003.safetensors",
|
| 637 |
+
"vision_tower.blocks.2.8.spatial_block.conv2.fn.dw.bias": "model-00003-of-00003.safetensors",
|
| 638 |
+
"vision_tower.blocks.2.8.spatial_block.conv2.fn.dw.weight": "model-00003-of-00003.safetensors",
|
| 639 |
+
"vision_tower.blocks.2.8.spatial_block.ffn.fn.net.fc1.bias": "model-00003-of-00003.safetensors",
|
| 640 |
+
"vision_tower.blocks.2.8.spatial_block.ffn.fn.net.fc1.weight": "model-00003-of-00003.safetensors",
|
| 641 |
+
"vision_tower.blocks.2.8.spatial_block.ffn.fn.net.fc2.bias": "model-00003-of-00003.safetensors",
|
| 642 |
+
"vision_tower.blocks.2.8.spatial_block.ffn.fn.net.fc2.weight": "model-00003-of-00003.safetensors",
|
| 643 |
+
"vision_tower.blocks.2.8.spatial_block.ffn.norm.bias": "model-00003-of-00003.safetensors",
|
| 644 |
+
"vision_tower.blocks.2.8.spatial_block.ffn.norm.weight": "model-00003-of-00003.safetensors",
|
| 645 |
+
"vision_tower.blocks.2.8.spatial_block.window_attn.fn.proj.bias": "model-00003-of-00003.safetensors",
|
| 646 |
+
"vision_tower.blocks.2.8.spatial_block.window_attn.fn.proj.weight": "model-00003-of-00003.safetensors",
|
| 647 |
+
"vision_tower.blocks.2.8.spatial_block.window_attn.fn.qkv.bias": "model-00003-of-00003.safetensors",
|
| 648 |
+
"vision_tower.blocks.2.8.spatial_block.window_attn.fn.qkv.weight": "model-00003-of-00003.safetensors",
|
| 649 |
+
"vision_tower.blocks.2.8.spatial_block.window_attn.norm.bias": "model-00003-of-00003.safetensors",
|
| 650 |
+
"vision_tower.blocks.2.8.spatial_block.window_attn.norm.weight": "model-00003-of-00003.safetensors",
|
| 651 |
+
"vision_tower.blocks.3.0.channel_block.channel_attn.fn.proj.bias": "model-00003-of-00003.safetensors",
|
| 652 |
+
"vision_tower.blocks.3.0.channel_block.channel_attn.fn.proj.weight": "model-00003-of-00003.safetensors",
|
| 653 |
+
"vision_tower.blocks.3.0.channel_block.channel_attn.fn.qkv.bias": "model-00003-of-00003.safetensors",
|
| 654 |
+
"vision_tower.blocks.3.0.channel_block.channel_attn.fn.qkv.weight": "model-00003-of-00003.safetensors",
|
| 655 |
+
"vision_tower.blocks.3.0.channel_block.channel_attn.norm.bias": "model-00003-of-00003.safetensors",
|
| 656 |
+
"vision_tower.blocks.3.0.channel_block.channel_attn.norm.weight": "model-00003-of-00003.safetensors",
|
| 657 |
+
"vision_tower.blocks.3.0.channel_block.conv1.fn.dw.bias": "model-00003-of-00003.safetensors",
|
| 658 |
+
"vision_tower.blocks.3.0.channel_block.conv1.fn.dw.weight": "model-00003-of-00003.safetensors",
|
| 659 |
+
"vision_tower.blocks.3.0.channel_block.conv2.fn.dw.bias": "model-00003-of-00003.safetensors",
|
| 660 |
+
"vision_tower.blocks.3.0.channel_block.conv2.fn.dw.weight": "model-00003-of-00003.safetensors",
|
| 661 |
+
"vision_tower.blocks.3.0.channel_block.ffn.fn.net.fc1.bias": "model-00003-of-00003.safetensors",
|
| 662 |
+
"vision_tower.blocks.3.0.channel_block.ffn.fn.net.fc1.weight": "model-00003-of-00003.safetensors",
|
| 663 |
+
"vision_tower.blocks.3.0.channel_block.ffn.fn.net.fc2.bias": "model-00003-of-00003.safetensors",
|
| 664 |
+
"vision_tower.blocks.3.0.channel_block.ffn.fn.net.fc2.weight": "model-00003-of-00003.safetensors",
|
| 665 |
+
"vision_tower.blocks.3.0.channel_block.ffn.norm.bias": "model-00003-of-00003.safetensors",
|
| 666 |
+
"vision_tower.blocks.3.0.channel_block.ffn.norm.weight": "model-00003-of-00003.safetensors",
|
| 667 |
+
"vision_tower.blocks.3.0.spatial_block.conv1.fn.dw.bias": "model-00003-of-00003.safetensors",
|
| 668 |
+
"vision_tower.blocks.3.0.spatial_block.conv1.fn.dw.weight": "model-00003-of-00003.safetensors",
|
| 669 |
+
"vision_tower.blocks.3.0.spatial_block.conv2.fn.dw.bias": "model-00003-of-00003.safetensors",
|
| 670 |
+
"vision_tower.blocks.3.0.spatial_block.conv2.fn.dw.weight": "model-00003-of-00003.safetensors",
|
| 671 |
+
"vision_tower.blocks.3.0.spatial_block.ffn.fn.net.fc1.bias": "model-00003-of-00003.safetensors",
|
| 672 |
+
"vision_tower.blocks.3.0.spatial_block.ffn.fn.net.fc1.weight": "model-00003-of-00003.safetensors",
|
| 673 |
+
"vision_tower.blocks.3.0.spatial_block.ffn.fn.net.fc2.bias": "model-00003-of-00003.safetensors",
|
| 674 |
+
"vision_tower.blocks.3.0.spatial_block.ffn.fn.net.fc2.weight": "model-00003-of-00003.safetensors",
|
| 675 |
+
"vision_tower.blocks.3.0.spatial_block.ffn.norm.bias": "model-00003-of-00003.safetensors",
|
| 676 |
+
"vision_tower.blocks.3.0.spatial_block.ffn.norm.weight": "model-00003-of-00003.safetensors",
|
| 677 |
+
"vision_tower.blocks.3.0.spatial_block.window_attn.fn.proj.bias": "model-00003-of-00003.safetensors",
|
| 678 |
+
"vision_tower.blocks.3.0.spatial_block.window_attn.fn.proj.weight": "model-00003-of-00003.safetensors",
|
| 679 |
+
"vision_tower.blocks.3.0.spatial_block.window_attn.fn.qkv.bias": "model-00003-of-00003.safetensors",
|
| 680 |
+
"vision_tower.blocks.3.0.spatial_block.window_attn.fn.qkv.weight": "model-00003-of-00003.safetensors",
|
| 681 |
+
"vision_tower.blocks.3.0.spatial_block.window_attn.norm.bias": "model-00003-of-00003.safetensors",
|
| 682 |
+
"vision_tower.blocks.3.0.spatial_block.window_attn.norm.weight": "model-00003-of-00003.safetensors",
|
| 683 |
+
"vision_tower.convs.0.norm.bias": "model-00003-of-00003.safetensors",
|
| 684 |
+
"vision_tower.convs.0.norm.weight": "model-00003-of-00003.safetensors",
|
| 685 |
+
"vision_tower.convs.0.proj.bias": "model-00003-of-00003.safetensors",
|
| 686 |
+
"vision_tower.convs.0.proj.weight": "model-00003-of-00003.safetensors",
|
| 687 |
+
"vision_tower.convs.1.norm.bias": "model-00003-of-00003.safetensors",
|
| 688 |
+
"vision_tower.convs.1.norm.weight": "model-00003-of-00003.safetensors",
|
| 689 |
+
"vision_tower.convs.1.proj.bias": "model-00003-of-00003.safetensors",
|
| 690 |
+
"vision_tower.convs.1.proj.weight": "model-00003-of-00003.safetensors",
|
| 691 |
+
"vision_tower.convs.2.norm.bias": "model-00003-of-00003.safetensors",
|
| 692 |
+
"vision_tower.convs.2.norm.weight": "model-00003-of-00003.safetensors",
|
| 693 |
+
"vision_tower.convs.2.proj.bias": "model-00003-of-00003.safetensors",
|
| 694 |
+
"vision_tower.convs.2.proj.weight": "model-00003-of-00003.safetensors",
|
| 695 |
+
"vision_tower.convs.3.norm.bias": "model-00003-of-00003.safetensors",
|
| 696 |
+
"vision_tower.convs.3.norm.weight": "model-00003-of-00003.safetensors",
|
| 697 |
+
"vision_tower.convs.3.proj.bias": "model-00003-of-00003.safetensors",
|
| 698 |
+
"vision_tower.convs.3.proj.weight": "model-00003-of-00003.safetensors",
|
| 699 |
+
"vision_tower.head.bias": "model-00003-of-00003.safetensors",
|
| 700 |
+
"vision_tower.head.weight": "model-00003-of-00003.safetensors",
|
| 701 |
+
"vision_tower.norms.bias": "model-00003-of-00003.safetensors",
|
| 702 |
+
"vision_tower.norms.weight": "model-00003-of-00003.safetensors",
|
| 703 |
+
"visual_temporal_embed.pos_idx_to_embed": "model-00003-of-00003.safetensors"
|
| 704 |
+
}
|
| 705 |
+
}
|
modeling_feynmodel.py
ADDED
|
@@ -0,0 +1,1528 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
+
# modeling_fynmodel : Imed MAGROUNE / 2024 - 09
|
| 2 |
+
# original code from modeling_FeynModel
|
| 3 |
+
# add DaVit Vision Tower
|
| 4 |
+
#
|
| 5 |
+
# update generate forward function
|
| 6 |
+
#
|
| 7 |
+
# add lora adapters
|
| 8 |
+
#
|
| 9 |
+
# train on coco OD and vision reasoning
|
| 10 |
+
# train on ScenceQA
|
| 11 |
+
#
|
| 12 |
+
# todo add mamaba layer
|
| 13 |
+
#
|
| 14 |
+
# todo train on Arc-AGI
|
| 15 |
+
|
| 16 |
+
|
| 17 |
+
from transformers.modeling_utils import PreTrainedModel
|
| 18 |
+
from transformers.utils import (
|
| 19 |
+
ModelOutput,
|
| 20 |
+
add_start_docstrings,
|
| 21 |
+
add_start_docstrings_to_model_forward,
|
| 22 |
+
is_flash_attn_2_available,
|
| 23 |
+
logging,
|
| 24 |
+
replace_return_docstrings,
|
| 25 |
+
is_flash_attn_2_available,
|
| 26 |
+
is_flash_attn_greater_or_equal_2_10,
|
| 27 |
+
)
|
| 28 |
+
from transformers.activations import ACT2FN
|
| 29 |
+
from transformers.modeling_attn_mask_utils import (
|
| 30 |
+
_prepare_4d_attention_mask,
|
| 31 |
+
_prepare_4d_attention_mask_for_sdpa,
|
| 32 |
+
_prepare_4d_causal_attention_mask,
|
| 33 |
+
_prepare_4d_causal_attention_mask_for_sdpa,
|
| 34 |
+
)
|
| 35 |
+
from transformers.modeling_outputs import (
|
| 36 |
+
BaseModelOutput,
|
| 37 |
+
BaseModelOutputWithPastAndCrossAttentions,
|
| 38 |
+
Seq2SeqLMOutput,
|
| 39 |
+
Seq2SeqModelOutput,
|
| 40 |
+
)
|
| 41 |
+
|
| 42 |
+
from transformers.cache_utils import Cache, HybridCache
|
| 43 |
+
from transformers.modeling_outputs import (
|
| 44 |
+
BaseModelOutputWithPast,
|
| 45 |
+
CausalLMOutputWithPast,
|
| 46 |
+
SequenceClassifierOutputWithPast,
|
| 47 |
+
TokenClassifierOutput,
|
| 48 |
+
)
|
| 49 |
+
|
| 50 |
+
from typing import List, Optional, Tuple, Union
|
| 51 |
+
|
| 52 |
+
from transformers.models.gemma2.modeling_gemma2 import Gemma2Model, Gemma2ForCausalLM,Gemma2DecoderLayer,Gemma2RMSNorm
|
| 53 |
+
from .configuration_feynmodel import FeynModelConfig,Florence2VisionConfig
|
| 54 |
+
|
| 55 |
+
from transformers import AutoProcessor, AutoTokenizer, AutoModelForCausalLM
|
| 56 |
+
import json
|
| 57 |
+
import math
|
| 58 |
+
import torch
|
| 59 |
+
from torch import nn
|
| 60 |
+
import torch.nn.functional as F
|
| 61 |
+
import logging
|
| 62 |
+
|
| 63 |
+
from transformers.utils import (
|
| 64 |
+
ModelOutput,
|
| 65 |
+
add_start_docstrings,
|
| 66 |
+
add_start_docstrings_to_model_forward,
|
| 67 |
+
is_flash_attn_2_available,
|
| 68 |
+
logging,
|
| 69 |
+
replace_return_docstrings,
|
| 70 |
+
is_flash_attn_2_available,
|
| 71 |
+
is_flash_attn_greater_or_equal_2_10,
|
| 72 |
+
)
|
| 73 |
+
|
| 74 |
+
from transformers.modeling_utils import PreTrainedModel
|
| 75 |
+
|
| 76 |
+
from collections import OrderedDict
|
| 77 |
+
from einops import rearrange
|
| 78 |
+
from timm.models.layers import DropPath, trunc_normal_
|
| 79 |
+
|
| 80 |
+
logger = logging.get_logger(__name__)
|
| 81 |
+
|
| 82 |
+
class MySequential(nn.Sequential):
|
| 83 |
+
def forward(self, *inputs):
|
| 84 |
+
for module in self._modules.values():
|
| 85 |
+
if type(inputs) == tuple:
|
| 86 |
+
inputs = module(*inputs)
|
| 87 |
+
else:
|
| 88 |
+
inputs = module(inputs)
|
| 89 |
+
return inputs
|
| 90 |
+
|
| 91 |
+
|
| 92 |
+
class PreNorm(nn.Module):
|
| 93 |
+
def __init__(self, norm, fn, drop_path=None):
|
| 94 |
+
super().__init__()
|
| 95 |
+
self.norm = norm
|
| 96 |
+
self.fn = fn
|
| 97 |
+
self.drop_path = drop_path
|
| 98 |
+
|
| 99 |
+
def forward(self, x, *args, **kwargs):
|
| 100 |
+
shortcut = x
|
| 101 |
+
if self.norm != None:
|
| 102 |
+
x, size = self.fn(self.norm(x), *args, **kwargs)
|
| 103 |
+
else:
|
| 104 |
+
x, size = self.fn(x, *args, **kwargs)
|
| 105 |
+
|
| 106 |
+
if self.drop_path:
|
| 107 |
+
x = self.drop_path(x)
|
| 108 |
+
|
| 109 |
+
x = shortcut + x
|
| 110 |
+
|
| 111 |
+
return x, size
|
| 112 |
+
|
| 113 |
+
|
| 114 |
+
class Mlp(nn.Module):
|
| 115 |
+
def __init__(
|
| 116 |
+
self,
|
| 117 |
+
in_features,
|
| 118 |
+
hidden_features=None,
|
| 119 |
+
out_features=None,
|
| 120 |
+
act_layer=nn.GELU,
|
| 121 |
+
):
|
| 122 |
+
super().__init__()
|
| 123 |
+
out_features = out_features or in_features
|
| 124 |
+
hidden_features = hidden_features or in_features
|
| 125 |
+
self.net = nn.Sequential(OrderedDict([
|
| 126 |
+
("fc1", nn.Linear(in_features, hidden_features)),
|
| 127 |
+
("act", act_layer()),
|
| 128 |
+
("fc2", nn.Linear(hidden_features, out_features))
|
| 129 |
+
]))
|
| 130 |
+
|
| 131 |
+
def forward(self, x, size):
|
| 132 |
+
return self.net(x), size
|
| 133 |
+
|
| 134 |
+
|
| 135 |
+
class DepthWiseConv2d(nn.Module):
|
| 136 |
+
def __init__(
|
| 137 |
+
self,
|
| 138 |
+
dim_in,
|
| 139 |
+
kernel_size,
|
| 140 |
+
padding,
|
| 141 |
+
stride,
|
| 142 |
+
bias=True,
|
| 143 |
+
):
|
| 144 |
+
super().__init__()
|
| 145 |
+
self.dw = nn.Conv2d(
|
| 146 |
+
dim_in, dim_in,
|
| 147 |
+
kernel_size=kernel_size,
|
| 148 |
+
padding=padding,
|
| 149 |
+
groups=dim_in,
|
| 150 |
+
stride=stride,
|
| 151 |
+
bias=bias
|
| 152 |
+
)
|
| 153 |
+
|
| 154 |
+
def forward(self, x, size):
|
| 155 |
+
B, N, C = x.shape
|
| 156 |
+
H, W = size
|
| 157 |
+
assert N == H * W
|
| 158 |
+
|
| 159 |
+
x = self.dw(x.transpose(1, 2).view(B, C, H, W))
|
| 160 |
+
size = (x.size(-2), x.size(-1))
|
| 161 |
+
x = x.flatten(2).transpose(1, 2)
|
| 162 |
+
return x, size
|
| 163 |
+
|
| 164 |
+
|
| 165 |
+
class ConvEmbed(nn.Module):
|
| 166 |
+
""" Image to Patch Embedding
|
| 167 |
+
"""
|
| 168 |
+
|
| 169 |
+
def __init__(
|
| 170 |
+
self,
|
| 171 |
+
patch_size=7,
|
| 172 |
+
in_chans=3,
|
| 173 |
+
embed_dim=64,
|
| 174 |
+
stride=4,
|
| 175 |
+
padding=2,
|
| 176 |
+
norm_layer=None,
|
| 177 |
+
pre_norm=True
|
| 178 |
+
):
|
| 179 |
+
super().__init__()
|
| 180 |
+
self.patch_size = patch_size
|
| 181 |
+
|
| 182 |
+
self.proj = nn.Conv2d(
|
| 183 |
+
in_chans, embed_dim,
|
| 184 |
+
kernel_size=patch_size,
|
| 185 |
+
stride=stride,
|
| 186 |
+
padding=padding
|
| 187 |
+
)
|
| 188 |
+
|
| 189 |
+
dim_norm = in_chans if pre_norm else embed_dim
|
| 190 |
+
self.norm = norm_layer(dim_norm) if norm_layer else None
|
| 191 |
+
|
| 192 |
+
self.pre_norm = pre_norm
|
| 193 |
+
|
| 194 |
+
def forward(self, x, size):
|
| 195 |
+
H, W = size
|
| 196 |
+
if len(x.size()) == 3:
|
| 197 |
+
if self.norm and self.pre_norm:
|
| 198 |
+
x = self.norm(x)
|
| 199 |
+
x = rearrange(
|
| 200 |
+
x, 'b (h w) c -> b c h w',
|
| 201 |
+
h=H, w=W
|
| 202 |
+
)
|
| 203 |
+
|
| 204 |
+
x = self.proj(x)
|
| 205 |
+
|
| 206 |
+
_, _, H, W = x.shape
|
| 207 |
+
x = rearrange(x, 'b c h w -> b (h w) c')
|
| 208 |
+
if self.norm and not self.pre_norm:
|
| 209 |
+
x = self.norm(x)
|
| 210 |
+
|
| 211 |
+
return x, (H, W)
|
| 212 |
+
|
| 213 |
+
|
| 214 |
+
class ChannelAttention(nn.Module):
|
| 215 |
+
|
| 216 |
+
def __init__(self, dim, groups=8, qkv_bias=True):
|
| 217 |
+
super().__init__()
|
| 218 |
+
|
| 219 |
+
self.groups = groups
|
| 220 |
+
self.qkv = nn.Linear(dim, dim * 3, bias=qkv_bias)
|
| 221 |
+
self.proj = nn.Linear(dim, dim)
|
| 222 |
+
|
| 223 |
+
def forward(self, x, size):
|
| 224 |
+
B, N, C = x.shape
|
| 225 |
+
|
| 226 |
+
qkv = self.qkv(x).reshape(B, N, 3, self.groups, C // self.groups).permute(2, 0, 3, 1, 4)
|
| 227 |
+
q, k, v = qkv[0], qkv[1], qkv[2]
|
| 228 |
+
|
| 229 |
+
q = q * (float(N) ** -0.5)
|
| 230 |
+
attention = q.transpose(-1, -2) @ k
|
| 231 |
+
attention = attention.softmax(dim=-1)
|
| 232 |
+
x = (attention @ v.transpose(-1, -2)).transpose(-1, -2)
|
| 233 |
+
x = x.transpose(1, 2).reshape(B, N, C)
|
| 234 |
+
x = self.proj(x)
|
| 235 |
+
return x, size
|
| 236 |
+
|
| 237 |
+
|
| 238 |
+
class ChannelBlock(nn.Module):
|
| 239 |
+
|
| 240 |
+
def __init__(self, dim, groups, mlp_ratio=4., qkv_bias=True,
|
| 241 |
+
drop_path_rate=0., act_layer=nn.GELU, norm_layer=nn.LayerNorm,
|
| 242 |
+
conv_at_attn=True, conv_at_ffn=True):
|
| 243 |
+
super().__init__()
|
| 244 |
+
|
| 245 |
+
drop_path = DropPath(drop_path_rate) if drop_path_rate > 0. else nn.Identity()
|
| 246 |
+
|
| 247 |
+
self.conv1 = PreNorm(None, DepthWiseConv2d(dim, 3, 1, 1)) if conv_at_attn else None
|
| 248 |
+
self.channel_attn = PreNorm(
|
| 249 |
+
norm_layer(dim),
|
| 250 |
+
ChannelAttention(dim, groups=groups, qkv_bias=qkv_bias),
|
| 251 |
+
drop_path
|
| 252 |
+
)
|
| 253 |
+
self.conv2 = PreNorm(None, DepthWiseConv2d(dim, 3, 1, 1)) if conv_at_ffn else None
|
| 254 |
+
self.ffn = PreNorm(
|
| 255 |
+
norm_layer(dim),
|
| 256 |
+
Mlp(in_features=dim, hidden_features=int(dim*mlp_ratio), act_layer=act_layer),
|
| 257 |
+
drop_path
|
| 258 |
+
)
|
| 259 |
+
|
| 260 |
+
def forward(self, x, size):
|
| 261 |
+
if self.conv1:
|
| 262 |
+
x, size = self.conv1(x, size)
|
| 263 |
+
x, size = self.channel_attn(x, size)
|
| 264 |
+
|
| 265 |
+
if self.conv2:
|
| 266 |
+
x, size = self.conv2(x, size)
|
| 267 |
+
x, size = self.ffn(x, size)
|
| 268 |
+
|
| 269 |
+
return x, size
|
| 270 |
+
|
| 271 |
+
|
| 272 |
+
def window_partition(x, window_size: int):
|
| 273 |
+
B, H, W, C = x.shape
|
| 274 |
+
x = x.view(B, H // window_size, window_size, W // window_size, window_size, C)
|
| 275 |
+
windows = x.permute(0, 1, 3, 2, 4, 5).contiguous().view(-1, window_size, window_size, C)
|
| 276 |
+
return windows
|
| 277 |
+
|
| 278 |
+
|
| 279 |
+
def window_reverse(windows, batch_size: int, window_size: int, H: int, W: int):
|
| 280 |
+
B = batch_size
|
| 281 |
+
# this will cause onnx conversion failed for dynamic axis, because treated as constant
|
| 282 |
+
# int(windows.shape[0] / (H * W / window_size / window_size))
|
| 283 |
+
x = windows.view(B, H // window_size, W // window_size, window_size, window_size, -1)
|
| 284 |
+
x = x.permute(0, 1, 3, 2, 4, 5).contiguous().view(B, H, W, -1)
|
| 285 |
+
return x
|
| 286 |
+
|
| 287 |
+
|
| 288 |
+
class WindowAttention(nn.Module):
|
| 289 |
+
def __init__(self, dim, num_heads, window_size, qkv_bias=True):
|
| 290 |
+
|
| 291 |
+
super().__init__()
|
| 292 |
+
self.dim = dim
|
| 293 |
+
self.window_size = window_size
|
| 294 |
+
self.num_heads = num_heads
|
| 295 |
+
head_dim = dim // num_heads
|
| 296 |
+
self.scale = float(head_dim) ** -0.5
|
| 297 |
+
|
| 298 |
+
self.qkv = nn.Linear(dim, dim * 3, bias=qkv_bias)
|
| 299 |
+
self.proj = nn.Linear(dim, dim)
|
| 300 |
+
|
| 301 |
+
self.softmax = nn.Softmax(dim=-1)
|
| 302 |
+
|
| 303 |
+
def forward(self, x, size):
|
| 304 |
+
|
| 305 |
+
H, W = size
|
| 306 |
+
B, L, C = x.shape
|
| 307 |
+
assert L == H * W, "input feature has wrong size"
|
| 308 |
+
|
| 309 |
+
x = x.view(B, H, W, C)
|
| 310 |
+
|
| 311 |
+
pad_l = pad_t = 0
|
| 312 |
+
pad_r = (self.window_size - W % self.window_size) % self.window_size
|
| 313 |
+
pad_b = (self.window_size - H % self.window_size) % self.window_size
|
| 314 |
+
x = F.pad(x, (0, 0, pad_l, pad_r, pad_t, pad_b))
|
| 315 |
+
_, Hp, Wp, _ = x.shape
|
| 316 |
+
|
| 317 |
+
x = window_partition(x, self.window_size)
|
| 318 |
+
x = x.view(-1, self.window_size * self.window_size, C)
|
| 319 |
+
|
| 320 |
+
# W-MSA/SW-MSA
|
| 321 |
+
# attn_windows = self.attn(x_windows)
|
| 322 |
+
|
| 323 |
+
B_, N, C = x.shape
|
| 324 |
+
qkv = self.qkv(x).reshape(B_, N, 3, self.num_heads, C // self.num_heads).permute(2, 0, 3, 1, 4)
|
| 325 |
+
q, k, v = qkv[0], qkv[1], qkv[2]
|
| 326 |
+
|
| 327 |
+
q = q * self.scale
|
| 328 |
+
attn = (q @ k.transpose(-2, -1))
|
| 329 |
+
attn = self.softmax(attn)
|
| 330 |
+
|
| 331 |
+
x = (attn @ v).transpose(1, 2).reshape(B_, N, C)
|
| 332 |
+
x = self.proj(x)
|
| 333 |
+
|
| 334 |
+
# merge windows
|
| 335 |
+
x = x.view(
|
| 336 |
+
-1, self.window_size, self.window_size, C
|
| 337 |
+
)
|
| 338 |
+
x = window_reverse(x, B, self.window_size, Hp, Wp)
|
| 339 |
+
|
| 340 |
+
if pad_r > 0 or pad_b > 0:
|
| 341 |
+
x = x[:, :H, :W, :].contiguous()
|
| 342 |
+
|
| 343 |
+
x = x.view(B, H * W, C)
|
| 344 |
+
|
| 345 |
+
return x, size
|
| 346 |
+
|
| 347 |
+
|
| 348 |
+
class SpatialBlock(nn.Module):
|
| 349 |
+
|
| 350 |
+
def __init__(self, dim, num_heads, window_size,
|
| 351 |
+
mlp_ratio=4., qkv_bias=True, drop_path_rate=0., act_layer=nn.GELU,
|
| 352 |
+
norm_layer=nn.LayerNorm, conv_at_attn=True, conv_at_ffn=True):
|
| 353 |
+
super().__init__()
|
| 354 |
+
|
| 355 |
+
drop_path = DropPath(drop_path_rate) if drop_path_rate > 0. else nn.Identity()
|
| 356 |
+
|
| 357 |
+
self.conv1 = PreNorm(None, DepthWiseConv2d(dim, 3, 1, 1)) if conv_at_attn else None
|
| 358 |
+
self.window_attn = PreNorm(
|
| 359 |
+
norm_layer(dim),
|
| 360 |
+
WindowAttention(dim, num_heads, window_size, qkv_bias=qkv_bias),
|
| 361 |
+
drop_path
|
| 362 |
+
)
|
| 363 |
+
self.conv2 = PreNorm(None, DepthWiseConv2d(dim, 3, 1, 1)) if conv_at_ffn else None
|
| 364 |
+
self.ffn = PreNorm(
|
| 365 |
+
norm_layer(dim),
|
| 366 |
+
Mlp(in_features=dim, hidden_features=int(dim*mlp_ratio), act_layer=act_layer),
|
| 367 |
+
drop_path
|
| 368 |
+
)
|
| 369 |
+
|
| 370 |
+
def forward(self, x, size):
|
| 371 |
+
if self.conv1:
|
| 372 |
+
x, size = self.conv1(x, size)
|
| 373 |
+
x, size = self.window_attn(x, size)
|
| 374 |
+
|
| 375 |
+
if self.conv2:
|
| 376 |
+
x, size = self.conv2(x, size)
|
| 377 |
+
x, size = self.ffn(x, size)
|
| 378 |
+
return x, size
|
| 379 |
+
|
| 380 |
+
|
| 381 |
+
class DaViT(nn.Module):
|
| 382 |
+
""" DaViT: Dual-Attention Transformer
|
| 383 |
+
|
| 384 |
+
Args:
|
| 385 |
+
in_chans (int): Number of input image channels. Default: 3.
|
| 386 |
+
num_classes (int): Number of classes for classification head. Default: 1000.
|
| 387 |
+
patch_size (tuple(int)): Patch size of convolution in different stages. Default: (7, 2, 2, 2).
|
| 388 |
+
patch_stride (tuple(int)): Patch stride of convolution in different stages. Default: (4, 2, 2, 2).
|
| 389 |
+
patch_padding (tuple(int)): Patch padding of convolution in different stages. Default: (3, 0, 0, 0).
|
| 390 |
+
patch_prenorm (tuple(bool)): If True, perform norm before convlution layer. Default: (True, False, False, False).
|
| 391 |
+
embed_dims (tuple(int)): Patch embedding dimension in different stages. Default: (64, 128, 192, 256).
|
| 392 |
+
num_heads (tuple(int)): Number of spatial attention heads in different stages. Default: (4, 8, 12, 16).
|
| 393 |
+
num_groups (tuple(int)): Number of channel groups in different stages. Default: (4, 8, 12, 16).
|
| 394 |
+
window_size (int): Window size. Default: 7.
|
| 395 |
+
mlp_ratio (float): Ratio of mlp hidden dim to embedding dim. Default: 4.
|
| 396 |
+
qkv_bias (bool): If True, add a learnable bias to query, key, value. Default: True.
|
| 397 |
+
drop_path_rate (float): Stochastic depth rate. Default: 0.1.
|
| 398 |
+
norm_layer (nn.Module): Normalization layer. Default: nn.LayerNorm.
|
| 399 |
+
enable_checkpoint (bool): If True, enable checkpointing. Default: False.
|
| 400 |
+
conv_at_attn (bool): If True, performe depthwise convolution before attention layer. Default: True.
|
| 401 |
+
conv_at_ffn (bool): If True, performe depthwise convolution before ffn layer. Default: True.
|
| 402 |
+
"""
|
| 403 |
+
|
| 404 |
+
def __init__(
|
| 405 |
+
self,
|
| 406 |
+
in_chans=3,
|
| 407 |
+
num_classes=1000,
|
| 408 |
+
depths=(1, 1, 3, 1),
|
| 409 |
+
patch_size=(7, 2, 2, 2),
|
| 410 |
+
patch_stride=(4, 2, 2, 2),
|
| 411 |
+
patch_padding=(3, 0, 0, 0),
|
| 412 |
+
patch_prenorm=(False, False, False, False),
|
| 413 |
+
embed_dims=(64, 128, 192, 256),
|
| 414 |
+
num_heads=(3, 6, 12, 24),
|
| 415 |
+
num_groups=(3, 6, 12, 24),
|
| 416 |
+
window_size=7,
|
| 417 |
+
mlp_ratio=4.,
|
| 418 |
+
qkv_bias=True,
|
| 419 |
+
drop_path_rate=0.1,
|
| 420 |
+
norm_layer=nn.LayerNorm,
|
| 421 |
+
enable_checkpoint=False,
|
| 422 |
+
conv_at_attn=True,
|
| 423 |
+
conv_at_ffn=True,
|
| 424 |
+
):
|
| 425 |
+
super().__init__()
|
| 426 |
+
|
| 427 |
+
self.num_classes = num_classes
|
| 428 |
+
self.embed_dims = embed_dims
|
| 429 |
+
self.num_heads = num_heads
|
| 430 |
+
self.num_groups = num_groups
|
| 431 |
+
self.num_stages = len(self.embed_dims)
|
| 432 |
+
self.enable_checkpoint = enable_checkpoint
|
| 433 |
+
assert self.num_stages == len(self.num_heads) == len(self.num_groups)
|
| 434 |
+
|
| 435 |
+
num_stages = len(embed_dims)
|
| 436 |
+
dpr = [x.item() for x in torch.linspace(0, drop_path_rate, sum(depths)*2)]
|
| 437 |
+
|
| 438 |
+
depth_offset = 0
|
| 439 |
+
convs = []
|
| 440 |
+
blocks = []
|
| 441 |
+
for i in range(num_stages):
|
| 442 |
+
conv_embed = ConvEmbed(
|
| 443 |
+
patch_size=patch_size[i],
|
| 444 |
+
stride=patch_stride[i],
|
| 445 |
+
padding=patch_padding[i],
|
| 446 |
+
in_chans=in_chans if i == 0 else self.embed_dims[i - 1],
|
| 447 |
+
embed_dim=self.embed_dims[i],
|
| 448 |
+
norm_layer=norm_layer,
|
| 449 |
+
pre_norm=patch_prenorm[i]
|
| 450 |
+
)
|
| 451 |
+
convs.append(conv_embed)
|
| 452 |
+
|
| 453 |
+
block = MySequential(
|
| 454 |
+
*[
|
| 455 |
+
MySequential(OrderedDict([
|
| 456 |
+
(
|
| 457 |
+
'spatial_block', SpatialBlock(
|
| 458 |
+
embed_dims[i],
|
| 459 |
+
num_heads[i],
|
| 460 |
+
window_size,
|
| 461 |
+
drop_path_rate=dpr[depth_offset+j*2],
|
| 462 |
+
qkv_bias=qkv_bias,
|
| 463 |
+
mlp_ratio=mlp_ratio,
|
| 464 |
+
conv_at_attn=conv_at_attn,
|
| 465 |
+
conv_at_ffn=conv_at_ffn,
|
| 466 |
+
)
|
| 467 |
+
),
|
| 468 |
+
(
|
| 469 |
+
'channel_block', ChannelBlock(
|
| 470 |
+
embed_dims[i],
|
| 471 |
+
num_groups[i],
|
| 472 |
+
drop_path_rate=dpr[depth_offset+j*2+1],
|
| 473 |
+
qkv_bias=qkv_bias,
|
| 474 |
+
mlp_ratio=mlp_ratio,
|
| 475 |
+
conv_at_attn=conv_at_attn,
|
| 476 |
+
conv_at_ffn=conv_at_ffn,
|
| 477 |
+
)
|
| 478 |
+
)
|
| 479 |
+
])) for j in range(depths[i])
|
| 480 |
+
]
|
| 481 |
+
)
|
| 482 |
+
blocks.append(block)
|
| 483 |
+
depth_offset += depths[i]*2
|
| 484 |
+
|
| 485 |
+
self.convs = nn.ModuleList(convs)
|
| 486 |
+
self.blocks = nn.ModuleList(blocks)
|
| 487 |
+
|
| 488 |
+
self.norms = norm_layer(self.embed_dims[-1])
|
| 489 |
+
self.avgpool = nn.AdaptiveAvgPool1d(1)
|
| 490 |
+
self.head = nn.Linear(self.embed_dims[-1], num_classes) if num_classes > 0 else nn.Identity()
|
| 491 |
+
|
| 492 |
+
self.apply(self._init_weights)
|
| 493 |
+
|
| 494 |
+
@property
|
| 495 |
+
def dim_out(self):
|
| 496 |
+
return self.embed_dims[-1]
|
| 497 |
+
|
| 498 |
+
def _init_weights(self, m):
|
| 499 |
+
if isinstance(m, nn.Linear):
|
| 500 |
+
trunc_normal_(m.weight, std=0.02)
|
| 501 |
+
if m.bias is not None:
|
| 502 |
+
nn.init.constant_(m.bias, 0)
|
| 503 |
+
elif isinstance(m, nn.Conv2d):
|
| 504 |
+
nn.init.normal_(m.weight, std=0.02)
|
| 505 |
+
for name, _ in m.named_parameters():
|
| 506 |
+
if name in ['bias']:
|
| 507 |
+
nn.init.constant_(m.bias, 0)
|
| 508 |
+
elif isinstance(m, nn.LayerNorm):
|
| 509 |
+
nn.init.constant_(m.weight, 1.0)
|
| 510 |
+
nn.init.constant_(m.bias, 0)
|
| 511 |
+
elif isinstance(m, nn.BatchNorm2d):
|
| 512 |
+
nn.init.constant_(m.weight, 1.0)
|
| 513 |
+
nn.init.constant_(m.bias, 0)
|
| 514 |
+
|
| 515 |
+
def forward_features_unpool(self, x):
|
| 516 |
+
"""
|
| 517 |
+
forward until avg pooling
|
| 518 |
+
Args:
|
| 519 |
+
x (_type_): input image tensor
|
| 520 |
+
"""
|
| 521 |
+
input_size = (x.size(2), x.size(3))
|
| 522 |
+
for conv, block in zip(self.convs, self.blocks):
|
| 523 |
+
x, input_size = conv(x, input_size)
|
| 524 |
+
if self.enable_checkpoint:
|
| 525 |
+
x, input_size = checkpoint.checkpoint(block, x, input_size)
|
| 526 |
+
else:
|
| 527 |
+
x, input_size = block(x, input_size)
|
| 528 |
+
return x
|
| 529 |
+
|
| 530 |
+
def forward_features(self, x):
|
| 531 |
+
x = self.forward_features_unpool(x)
|
| 532 |
+
|
| 533 |
+
# (batch_size, num_tokens, token_dim)
|
| 534 |
+
x = self.avgpool(x.transpose(1, 2))
|
| 535 |
+
# (batch_size, 1, num_tokens)
|
| 536 |
+
x = torch.flatten(x, 1)
|
| 537 |
+
x = self.norms(x)
|
| 538 |
+
|
| 539 |
+
return x
|
| 540 |
+
|
| 541 |
+
def forward(self, x):
|
| 542 |
+
x = self.forward_features(x)
|
| 543 |
+
x = self.head(x)
|
| 544 |
+
return x
|
| 545 |
+
|
| 546 |
+
@classmethod
|
| 547 |
+
def from_config(cls, config):
|
| 548 |
+
return cls(
|
| 549 |
+
depths=config.depths,
|
| 550 |
+
embed_dims=config.dim_embed,
|
| 551 |
+
num_heads=config.num_heads,
|
| 552 |
+
num_groups=config.num_groups,
|
| 553 |
+
patch_size=config.patch_size,
|
| 554 |
+
patch_stride=config.patch_stride,
|
| 555 |
+
patch_padding=config.patch_padding,
|
| 556 |
+
patch_prenorm=config.patch_prenorm,
|
| 557 |
+
drop_path_rate=config.drop_path_rate,
|
| 558 |
+
window_size=config.window_size,
|
| 559 |
+
)
|
| 560 |
+
|
| 561 |
+
|
| 562 |
+
|
| 563 |
+
|
| 564 |
+
_CONFIG_FOR_DOC = "FeynModelConfig"
|
| 565 |
+
|
| 566 |
+
FEYNMODEL_START_DOCSTRING = r"""
|
| 567 |
+
This model inherits from [`PreTrainedModel`]. Check the superclass documentation for the generic methods the
|
| 568 |
+
library implements for all its model (such as downloading or saving, resizing the input embeddings, pruning heads
|
| 569 |
+
etc.)
|
| 570 |
+
|
| 571 |
+
This model is also a PyTorch [torch.nn.Module](https://pytorch.org/docs/stable/nn.html#torch.nn.Module) subclass.
|
| 572 |
+
Use it as a regular PyTorch Module and refer to the PyTorch documentation for all matter related to general usage
|
| 573 |
+
and behavior.
|
| 574 |
+
|
| 575 |
+
Parameters:
|
| 576 |
+
config ([`FeynModelConfig`]):
|
| 577 |
+
Model configuration class with all the parameters of the model. Initializing with a config file does not
|
| 578 |
+
load the weights associated with the model, only the configuration. Check out the
|
| 579 |
+
[`~PreTrainedModel.from_pretrained`] method to load the model weights.
|
| 580 |
+
"""
|
| 581 |
+
FEYNMODEL_INPUTS_DOCSTRING = r"""
|
| 582 |
+
Args:
|
| 583 |
+
input_ids (`torch.LongTensor` of shape `(batch_size, sequence_length)`):
|
| 584 |
+
Indices of input sequence tokens in the vocabulary. Padding will be ignored by default should you provide
|
| 585 |
+
it.
|
| 586 |
+
|
| 587 |
+
Indices can be obtained using [`AutoTokenizer`]. See [`PreTrainedTokenizer.encode`] and
|
| 588 |
+
[`PreTrainedTokenizer.__call__`] for details.
|
| 589 |
+
|
| 590 |
+
[What are input IDs?](../glossary#input-ids)
|
| 591 |
+
attention_mask (`torch.Tensor` of shape `(batch_size, sequence_length)`, *optional*):
|
| 592 |
+
Mask to avoid performing attention on padding token indices. Mask values selected in `[0, 1]`:
|
| 593 |
+
|
| 594 |
+
- 1 for tokens that are **not masked**,
|
| 595 |
+
- 0 for tokens that are **masked**.
|
| 596 |
+
|
| 597 |
+
[What are attention masks?](../glossary#attention-mask)
|
| 598 |
+
|
| 599 |
+
Indices can be obtained using [`AutoTokenizer`]. See [`PreTrainedTokenizer.encode`] and
|
| 600 |
+
[`PreTrainedTokenizer.__call__`] for details.
|
| 601 |
+
|
| 602 |
+
If `past_key_values` is used, optionally only the last `input_ids` have to be input (see
|
| 603 |
+
`past_key_values`).
|
| 604 |
+
|
| 605 |
+
If you want to change padding behavior, you should read [`modeling_opt._prepare_decoder_attention_mask`]
|
| 606 |
+
and modify to your needs. See diagram 1 in [the paper](https://arxiv.org/abs/1910.13461) for more
|
| 607 |
+
information on the default strategy.
|
| 608 |
+
|
| 609 |
+
- 1 indicates the head is **not masked**,
|
| 610 |
+
- 0 indicates the head is **masked**.
|
| 611 |
+
position_ids (`torch.LongTensor` of shape `(batch_size, sequence_length)`, *optional*):
|
| 612 |
+
Indices of positions of each input sequence tokens in the position embeddings. Selected in the range `[0,
|
| 613 |
+
config.n_positions - 1]`.
|
| 614 |
+
|
| 615 |
+
[What are position IDs?](../glossary#position-ids)
|
| 616 |
+
past_key_values (`Cache` or `tuple(tuple(torch.FloatTensor))`, *optional*):
|
| 617 |
+
Pre-computed hidden-states (key and values in the self-attention blocks and in the cross-attention
|
| 618 |
+
blocks) that can be used to speed up sequential decoding. This typically consists in the `past_key_values`
|
| 619 |
+
returned by the model at a previous stage of decoding, when `use_cache=True` or `config.use_cache=True`.
|
| 620 |
+
|
| 621 |
+
Two formats are allowed:
|
| 622 |
+
- a [`~cache_utils.Cache`] instance;
|
| 623 |
+
- Tuple of `tuple(torch.FloatTensor)` of length `config.n_layers`, with each tuple having 2 tensors of
|
| 624 |
+
shape `(batch_size, num_heads, sequence_length, embed_size_per_head)`). This is also known as the legacy
|
| 625 |
+
cache format.
|
| 626 |
+
|
| 627 |
+
The model will output the same cache format that is fed as input. If no `past_key_values` are passed, the
|
| 628 |
+
legacy cache format will be returned.
|
| 629 |
+
|
| 630 |
+
If `past_key_values` are used, the user can optionally input only the last `input_ids` (those that don't
|
| 631 |
+
have their past key value states given to this model) of shape `(batch_size, 1)` instead of all `input_ids`
|
| 632 |
+
of shape `(batch_size, sequence_length)`.
|
| 633 |
+
inputs_embeds (`torch.FloatTensor` of shape `(batch_size, sequence_length, hidden_size)`, *optional*):
|
| 634 |
+
Optionally, instead of passing `input_ids` you can choose to directly pass an embedded representation. This
|
| 635 |
+
is useful if you want more control over how to convert `input_ids` indices into associated vectors than the
|
| 636 |
+
model's internal embedding lookup matrix.
|
| 637 |
+
use_cache (`bool`, *optional*):
|
| 638 |
+
If set to `True`, `past_key_values` key value states are returned and can be used to speed up decoding (see
|
| 639 |
+
`past_key_values`).
|
| 640 |
+
output_attentions (`bool`, *optional*):
|
| 641 |
+
Whether or not to return the attentions tensors of all attention layers. See `attentions` under returned
|
| 642 |
+
tensors for more detail.
|
| 643 |
+
output_hidden_states (`bool`, *optional*):
|
| 644 |
+
Whether or not to return the hidden states of all layers. See `hidden_states` under returned tensors for
|
| 645 |
+
more detail.
|
| 646 |
+
return_dict (`bool`, *optional*):
|
| 647 |
+
Whether or not to return a [`~utils.ModelOutput`] instead of a plain tuple.
|
| 648 |
+
cache_position (`torch.LongTensor` of shape `(sequence_length)`, *optional*):
|
| 649 |
+
Indices depicting the position of the input sequence tokens in the sequence. Contrarily to `position_ids`,
|
| 650 |
+
this tensor is not affected by padding. It is used to update the cache in the correct position and to infer
|
| 651 |
+
the complete sequence length.
|
| 652 |
+
"""
|
| 653 |
+
|
| 654 |
+
# Copied from transformers.models.llama.modeling_llama._prepare_4d_causal_attention_mask_with_cache_position
|
| 655 |
+
def _prepare_4d_causal_attention_mask_with_cache_position(
|
| 656 |
+
attention_mask: torch.Tensor,
|
| 657 |
+
sequence_length: int,
|
| 658 |
+
target_length: int,
|
| 659 |
+
dtype: torch.dtype,
|
| 660 |
+
device: torch.device,
|
| 661 |
+
min_dtype: float,
|
| 662 |
+
cache_position: torch.Tensor,
|
| 663 |
+
batch_size: int,
|
| 664 |
+
):
|
| 665 |
+
|
| 666 |
+
#print(f" +++++++++ prepare 4K +++++++++++++++ rec {attention_mask.size()} sequence_length {sequence_length}")
|
| 667 |
+
if attention_mask is not None and attention_mask.dim() == 4:
|
| 668 |
+
# In this case we assume that the mask comes already in inverted form and requires no inversion or slicing.
|
| 669 |
+
#print("+++++++++++++++++ return it")
|
| 670 |
+
#causal_mask = attention_mask
|
| 671 |
+
# In this case we assume that the mask comes already in inverted form.
|
| 672 |
+
causal_mask = attention_mask[:, :, -sequence_length:, :]
|
| 673 |
+
#print(f"+++++++++++++++++ truncated causal_mask to last {sequence_length} elements, size: {causal_mask.size()}")
|
| 674 |
+
#print(f"+++++++++++++++++ return it causal_mask {causal_mask.size()} !!!!!!!!! attention_mask {attention_mask.size()}")
|
| 675 |
+
else:
|
| 676 |
+
#print("+++++++++++++++++++++ else +++++++++++++++++")
|
| 677 |
+
causal_mask = torch.full((sequence_length, target_length), fill_value=min_dtype, dtype=dtype, device=device)
|
| 678 |
+
#print(f"++++++++++++++++ causal_mask {causal_mask.size()} ++++++++++++++++++ sequence_length = {sequence_length} ")
|
| 679 |
+
if sequence_length != 1:
|
| 680 |
+
causal_mask = torch.triu(causal_mask, diagonal=1)
|
| 681 |
+
#print(f"++++++++++++++++++ causal_mask = torch.triu ++++++++++ {causal_mask.size()} ")
|
| 682 |
+
causal_mask *= torch.arange(target_length, device=device) > cache_position.reshape(-1, 1)
|
| 683 |
+
causal_mask = causal_mask[None, None, :, :].expand(batch_size, 1, -1, -1)
|
| 684 |
+
#print(f"+++++++++++++++++++++ avant if attention_mask is not None:, causal_mask={causal_mask.size()}")
|
| 685 |
+
if attention_mask is not None:
|
| 686 |
+
#print(" +++++++++++++ attention_mask is None++++++++++++")
|
| 687 |
+
causal_mask = causal_mask.clone() # copy to contiguous memory for in-place edit
|
| 688 |
+
mask_length = attention_mask.shape[-1]
|
| 689 |
+
padding_mask = causal_mask[:, :, :, :mask_length] + attention_mask[:, None, None, :]
|
| 690 |
+
padding_mask = padding_mask == 0
|
| 691 |
+
causal_mask[:, :, :, :mask_length] = causal_mask[:, :, :, :mask_length].masked_fill(
|
| 692 |
+
padding_mask, min_dtype
|
| 693 |
+
)
|
| 694 |
+
#print(f"+++++++++++++++++++ 4K returning causal_mask {causal_mask.size()} +++++++++++++++++++")
|
| 695 |
+
|
| 696 |
+
return causal_mask
|
| 697 |
+
|
| 698 |
+
class LearnedAbsolutePositionEmbedding2D(nn.Module):
|
| 699 |
+
"""
|
| 700 |
+
This module learns positional embeddings up to a fixed maximum size.
|
| 701 |
+
"""
|
| 702 |
+
|
| 703 |
+
def __init__(self, embedding_dim=256, num_pos=50):
|
| 704 |
+
super().__init__()
|
| 705 |
+
self.row_embeddings = nn.Embedding(num_pos, embedding_dim // 2)
|
| 706 |
+
self.column_embeddings = nn.Embedding(num_pos, embedding_dim - (embedding_dim // 2))
|
| 707 |
+
|
| 708 |
+
def forward(self, pixel_values):
|
| 709 |
+
"""
|
| 710 |
+
pixel_values: (batch_size, height, width, num_channels)
|
| 711 |
+
returns: (batch_size, height, width, embedding_dim * 2)
|
| 712 |
+
"""
|
| 713 |
+
if len(pixel_values.shape) != 4:
|
| 714 |
+
raise ValueError('pixel_values must be a 4D tensor')
|
| 715 |
+
height, width = pixel_values.shape[1:3]
|
| 716 |
+
width_values = torch.arange(width, device=pixel_values.device)
|
| 717 |
+
height_values = torch.arange(height, device=pixel_values.device)
|
| 718 |
+
x_emb = self.column_embeddings(width_values)
|
| 719 |
+
y_emb = self.row_embeddings(height_values)
|
| 720 |
+
# (height, width, embedding_dim * 2)
|
| 721 |
+
pos = torch.cat([x_emb.unsqueeze(0).repeat(height, 1, 1), y_emb.unsqueeze(1).repeat(1, width, 1)], dim=-1)
|
| 722 |
+
# (embedding_dim * 2, height, width)
|
| 723 |
+
pos = pos.permute(2, 0, 1)
|
| 724 |
+
pos = pos.unsqueeze(0)
|
| 725 |
+
# (batch_size, embedding_dim * 2, height, width)
|
| 726 |
+
pos = pos.repeat(pixel_values.shape[0], 1, 1, 1)
|
| 727 |
+
# (batch_size, height, width, embedding_dim * 2)
|
| 728 |
+
pos = pos.permute(0, 2, 3, 1)
|
| 729 |
+
return pos
|
| 730 |
+
|
| 731 |
+
class PositionalEmbeddingCosine1D(nn.Module):
|
| 732 |
+
"""
|
| 733 |
+
This class implements a very simple positional encoding. It follows closely
|
| 734 |
+
the encoder from the link below:
|
| 735 |
+
https://pytorch.org/tutorials/beginner/translation_transformer.html
|
| 736 |
+
Args:
|
| 737 |
+
embed_dim: The dimension of the embeddings.
|
| 738 |
+
dropout_prob: The dropout probability.
|
| 739 |
+
max_seq_len: The maximum length to precompute the positional encodings.
|
| 740 |
+
"""
|
| 741 |
+
def __init__(
|
| 742 |
+
self,
|
| 743 |
+
embed_dim: int = 512,
|
| 744 |
+
max_seq_len: int = 1024) -> None:
|
| 745 |
+
super(PositionalEmbeddingCosine1D, self).__init__()
|
| 746 |
+
self.embed_dim = embed_dim
|
| 747 |
+
self.max_seq_len = max_seq_len
|
| 748 |
+
# Generate the sinusoidal arrays.
|
| 749 |
+
factor = math.log(10000)
|
| 750 |
+
denominator = torch.exp(
|
| 751 |
+
-factor * torch.arange(0, self.embed_dim, 2) / self.embed_dim)
|
| 752 |
+
# Matrix where rows correspond to a positional embedding as a function
|
| 753 |
+
# of the position index (i.e., the row index).
|
| 754 |
+
frequencies = \
|
| 755 |
+
torch.arange(0, self.max_seq_len) \
|
| 756 |
+
.reshape(self.max_seq_len, 1) * denominator
|
| 757 |
+
pos_idx_to_embed = torch.zeros((self.max_seq_len, self.embed_dim))
|
| 758 |
+
# Populate uneven entries.
|
| 759 |
+
pos_idx_to_embed[:, 0::2] = torch.sin(frequencies)
|
| 760 |
+
pos_idx_to_embed[:, 1::2] = torch.cos(frequencies)
|
| 761 |
+
# Save the positional embeddings in a constant buffer.
|
| 762 |
+
self.register_buffer("pos_idx_to_embed", pos_idx_to_embed)
|
| 763 |
+
|
| 764 |
+
def forward(self, seq_embeds: torch.Tensor) -> torch.Tensor:
|
| 765 |
+
"""
|
| 766 |
+
Args:
|
| 767 |
+
seq_embeds: The sequence embeddings in order. Allowed size:
|
| 768 |
+
1. [T, D], where T is the length of the sequence, and D is the
|
| 769 |
+
frame embedding dimension.
|
| 770 |
+
2. [B, T, D], where B is the batch size and T and D are the
|
| 771 |
+
same as above.
|
| 772 |
+
Returns a tensor of with the same dimensions as the input: i.e.,
|
| 773 |
+
[1, T, D] or [T, D].
|
| 774 |
+
"""
|
| 775 |
+
shape_len = len(seq_embeds.shape)
|
| 776 |
+
assert 2 <= shape_len <= 3
|
| 777 |
+
len_seq = seq_embeds.size(-2)
|
| 778 |
+
assert len_seq <= self.max_seq_len
|
| 779 |
+
pos_embeds = self.pos_idx_to_embed[0:seq_embeds.size(-2), :]
|
| 780 |
+
# Adapt pre-computed positional embeddings to the input.
|
| 781 |
+
if shape_len == 3:
|
| 782 |
+
pos_embeds = pos_embeds.view(
|
| 783 |
+
(1, pos_embeds.size(0), pos_embeds.size(1)))
|
| 784 |
+
return pos_embeds
|
| 785 |
+
|
| 786 |
+
|
| 787 |
+
class LearnedAbsolutePositionEmbedding1D(nn.Module):
|
| 788 |
+
"""
|
| 789 |
+
Learnable absolute positional embeddings for 1D sequences.
|
| 790 |
+
Args:
|
| 791 |
+
embed_dim: The dimension of the embeddings.
|
| 792 |
+
max_seq_len: The maximum length to precompute the positional encodings.
|
| 793 |
+
"""
|
| 794 |
+
def __init__(
|
| 795 |
+
self,
|
| 796 |
+
embedding_dim: int = 512,
|
| 797 |
+
num_pos: int = 1024) -> None:
|
| 798 |
+
super(LearnedAbsolutePositionEmbedding1D, self).__init__()
|
| 799 |
+
self.embeddings = nn.Embedding(num_pos, embedding_dim)
|
| 800 |
+
self.num_pos = num_pos
|
| 801 |
+
|
| 802 |
+
def forward(self, seq_embeds: torch.Tensor) -> torch.Tensor:
|
| 803 |
+
"""
|
| 804 |
+
Args:
|
| 805 |
+
seq_embeds: The sequence embeddings in order. Allowed size:
|
| 806 |
+
1. [T, D], where T is the length of the sequence, and D is the
|
| 807 |
+
frame embedding dimension.
|
| 808 |
+
2. [B, T, D], where B is the batch size and T and D are the
|
| 809 |
+
same as above.
|
| 810 |
+
Returns a tensor of with the same dimensions as the input: i.e.,
|
| 811 |
+
[1, T, D] or [T, D].
|
| 812 |
+
"""
|
| 813 |
+
shape_len = len(seq_embeds.shape)
|
| 814 |
+
assert 2 <= shape_len <= 3
|
| 815 |
+
len_seq = seq_embeds.size(-2)
|
| 816 |
+
assert len_seq <= self.num_pos
|
| 817 |
+
# [T, D]
|
| 818 |
+
pos_embeds = self.embeddings(torch.arange(len_seq).to(seq_embeds.device))
|
| 819 |
+
# Adapt pre-computed positional embeddings to the input.
|
| 820 |
+
if shape_len == 3:
|
| 821 |
+
pos_embeds = pos_embeds.view(
|
| 822 |
+
(1, pos_embeds.size(0), pos_embeds.size(1)))
|
| 823 |
+
return pos_embeds
|
| 824 |
+
|
| 825 |
+
def create_git_attention_mask(
|
| 826 |
+
tgt: torch.Tensor,
|
| 827 |
+
memory: torch.Tensor,
|
| 828 |
+
max_length: int
|
| 829 |
+
) -> torch.Tensor:
|
| 830 |
+
# Obtain the dimensions of the target text and memory
|
| 831 |
+
batch_size = tgt.size(0)
|
| 832 |
+
num_tgt = tgt.shape[1]
|
| 833 |
+
num_memory = memory.shape[1]
|
| 834 |
+
total_length = num_memory + num_tgt
|
| 835 |
+
|
| 836 |
+
# Create the top left part of the attention matrix
|
| 837 |
+
top_left = torch.zeros((num_memory, num_memory)) # Attention enabled in this region
|
| 838 |
+
top_right = torch.full((num_memory, num_tgt), float(-3.4028e+38)) # Attention disabled here
|
| 839 |
+
|
| 840 |
+
# Bottom left part of the attention matrix
|
| 841 |
+
bottom_left = torch.zeros((num_tgt, num_memory)) # Attention enabled here
|
| 842 |
+
|
| 843 |
+
# Create a lower triangular matrix for the bottom right part
|
| 844 |
+
bottom_right = torch.tril(torch.ones(num_tgt, num_tgt))
|
| 845 |
+
|
| 846 |
+
# Transform 1s to 0 to enable attention, and 0s to -inf to block attention
|
| 847 |
+
bottom_right = bottom_right.masked_fill(bottom_right == 0, float(-3.4028e+38))
|
| 848 |
+
bottom_right = bottom_right.masked_fill(bottom_right == 1, float(0))
|
| 849 |
+
|
| 850 |
+
# Concatenate matrices to form the full mask
|
| 851 |
+
left = torch.cat((top_left, bottom_left), dim=0)
|
| 852 |
+
right = torch.cat((top_right, bottom_right), dim=0)
|
| 853 |
+
|
| 854 |
+
# Combine left and right parts
|
| 855 |
+
full_attention_mask = torch.cat((left, right), dim=1)
|
| 856 |
+
|
| 857 |
+
# Add padding to reach max_length
|
| 858 |
+
padding = torch.full((total_length, max_length - total_length), float(-3.4028e+38))
|
| 859 |
+
full_attention_mask = torch.cat((full_attention_mask, padding), dim=1)
|
| 860 |
+
|
| 861 |
+
# Add an axis for multi-heads and batch_size
|
| 862 |
+
full_attention_mask = full_attention_mask[None, None, :, :]
|
| 863 |
+
|
| 864 |
+
# Expand the mask to have shape (batch_size, 1, seq_length, max_length)
|
| 865 |
+
full_attention_mask = full_attention_mask.expand(batch_size, 1, full_attention_mask.size(-2), full_attention_mask.size(-1))
|
| 866 |
+
|
| 867 |
+
return full_attention_mask
|
| 868 |
+
|
| 869 |
+
def get_position_ids_from_binary_attention_mask(mask):
|
| 870 |
+
"""
|
| 871 |
+
Extract position IDs from a binary attention mask.
|
| 872 |
+
|
| 873 |
+
Args:
|
| 874 |
+
mask (torch.Tensor): The attention mask tensor of shape (1, 1, seq_len, seq_len),
|
| 875 |
+
where 1 indicates allowed attention and 0 indicates blocked attention.
|
| 876 |
+
|
| 877 |
+
Returns:
|
| 878 |
+
list: A list of lists where each sublist contains the allowed position IDs for each query position.
|
| 879 |
+
"""
|
| 880 |
+
# Assuming the mask is of shape (1, 1, seq_len, seq_len)
|
| 881 |
+
_, _, seq_len, _ = mask.shape
|
| 882 |
+
|
| 883 |
+
# Create a tensor with position IDs from 0 to seq_len - 1
|
| 884 |
+
position_ids = torch.arange(seq_len, dtype=torch.long, device=mask.device)
|
| 885 |
+
|
| 886 |
+
# Add a batch dimension
|
| 887 |
+
position_ids = position_ids.unsqueeze(0)
|
| 888 |
+
|
| 889 |
+
return position_ids
|
| 890 |
+
|
| 891 |
+
def ensure_tensor(variable):
|
| 892 |
+
# Check if the variable is a torch.Tensor
|
| 893 |
+
if isinstance(variable, torch.Tensor):
|
| 894 |
+
# print("Variable is already a tensor.")
|
| 895 |
+
return variable
|
| 896 |
+
else:
|
| 897 |
+
#print("Variable is not a tensor, converting...")
|
| 898 |
+
try:
|
| 899 |
+
# Convert the variable to a tensor
|
| 900 |
+
tensor = torch.tensor(variable)
|
| 901 |
+
#print("Conversion successful.")
|
| 902 |
+
return tensor
|
| 903 |
+
except Exception as e:
|
| 904 |
+
print(f"Error converting to tensor: {e}")
|
| 905 |
+
raise
|
| 906 |
+
|
| 907 |
+
@add_start_docstrings(
|
| 908 |
+
"The bare Model outputting raw hidden-states without any specific head on top.",
|
| 909 |
+
FEYNMODEL_START_DOCSTRING,
|
| 910 |
+
)
|
| 911 |
+
class FeynModel(Gemma2Model):
|
| 912 |
+
"""
|
| 913 |
+
Transformer decoder consisting of *config.num_hidden_layers* layers.
|
| 914 |
+
Each layer is a [`FeynModelDecoderLayer`] + ['LoraLayer'] for *proj* moduls
|
| 915 |
+
NB : LoraLayers will be added and activatd on proj modules onpy if pixel_values is not None
|
| 916 |
+
|
| 917 |
+
Args:
|
| 918 |
+
config: FeynModelConfig
|
| 919 |
+
"""
|
| 920 |
+
|
| 921 |
+
def __init__(self, config: FeynModelConfig):
|
| 922 |
+
super().__init__(config)
|
| 923 |
+
# Initialize weights and apply final processing
|
| 924 |
+
self.mode='llm'
|
| 925 |
+
'''
|
| 926 |
+
self.image_patch_tokens = int(
|
| 927 |
+
(config.vision_config.image_size / config.vision_config.patch_size) ** 2 + 1
|
| 928 |
+
)
|
| 929 |
+
|
| 930 |
+
if config.num_image_with_embedding is not None:
|
| 931 |
+
self.image_patch_tokens *= config.num_image_with_embedding
|
| 932 |
+
'''
|
| 933 |
+
self.image_patch_tokens = 577
|
| 934 |
+
self.post_init()
|
| 935 |
+
|
| 936 |
+
def get_input_embeddings(self):
|
| 937 |
+
return self.embed_tokens
|
| 938 |
+
|
| 939 |
+
def set_input_embeddings(self, value):
|
| 940 |
+
self.embed_tokens = value
|
| 941 |
+
|
| 942 |
+
|
| 943 |
+
|
| 944 |
+
|
| 945 |
+
@add_start_docstrings_to_model_forward(FEYNMODEL_INPUTS_DOCSTRING)
|
| 946 |
+
def forward(
|
| 947 |
+
self,
|
| 948 |
+
input_ids: torch.LongTensor = None,
|
| 949 |
+
attention_mask: Optional[torch.Tensor] = None,
|
| 950 |
+
position_ids: Optional[torch.LongTensor] = None,
|
| 951 |
+
past_key_values: Optional[Union[Cache, List[torch.FloatTensor]]] = None,
|
| 952 |
+
inputs_embeds: Optional[torch.FloatTensor] = None,
|
| 953 |
+
use_cache: Optional[bool] = None,
|
| 954 |
+
output_attentions: Optional[bool] = None,
|
| 955 |
+
output_hidden_states: Optional[bool] = None,
|
| 956 |
+
return_dict: Optional[bool] = None,
|
| 957 |
+
cache_position: Optional[torch.LongTensor] = None,
|
| 958 |
+
causal_attention_mask: Optional[torch.Tensor] = None,
|
| 959 |
+
**kwargs,
|
| 960 |
+
) -> Union[Tuple, BaseModelOutputWithPast]:
|
| 961 |
+
|
| 962 |
+
# print(f" self.mode = {self.mode}")
|
| 963 |
+
# Ensure cache_position is initialized if not provided
|
| 964 |
+
|
| 965 |
+
|
| 966 |
+
if cache_position is None:
|
| 967 |
+
batch_size = input_ids.size(0) if input_ids is not None else inputs_embeds.size(0)
|
| 968 |
+
cache_position = torch.zeros((batch_size,), dtype=torch.long, device=input_ids.device if input_ids is not None else inputs_embeds.device)
|
| 969 |
+
|
| 970 |
+
|
| 971 |
+
|
| 972 |
+
output_attentions = output_attentions if output_attentions is not None else self.config.output_attentions
|
| 973 |
+
output_hidden_states = (
|
| 974 |
+
output_hidden_states if output_hidden_states is not None else self.config.output_hidden_states
|
| 975 |
+
)
|
| 976 |
+
use_cache = use_cache if use_cache is not None else self.config.use_cache
|
| 977 |
+
return_dict = return_dict if return_dict is not None else self.config.use_return_dict
|
| 978 |
+
|
| 979 |
+
if (input_ids is None) ^ (inputs_embeds is not None):
|
| 980 |
+
raise ValueError(
|
| 981 |
+
"You cannot specify both input_ids and inputs_embeds at the same time, and must specify either one"
|
| 982 |
+
)
|
| 983 |
+
|
| 984 |
+
if self.gradient_checkpointing and self.training and use_cache:
|
| 985 |
+
logger.warning_once(
|
| 986 |
+
"`use_cache=True` is incompatible with gradient checkpointing. Setting `use_cache=False`."
|
| 987 |
+
)
|
| 988 |
+
use_cache = False
|
| 989 |
+
|
| 990 |
+
if inputs_embeds is None:
|
| 991 |
+
inputs_embeds = self.embed_tokens(input_ids)
|
| 992 |
+
causal_mask = self._update_causal_mask(
|
| 993 |
+
attention_mask, inputs_embeds, cache_position, past_key_values, output_attentions
|
| 994 |
+
)
|
| 995 |
+
else:
|
| 996 |
+
causal_mask = ensure_tensor(causal_attention_mask)
|
| 997 |
+
position_ids = get_position_ids_from_binary_attention_mask(attention_mask)
|
| 998 |
+
|
| 999 |
+
#print(f" causal_mask = {causal_mask} ")
|
| 1000 |
+
|
| 1001 |
+
if cache_position is None:
|
| 1002 |
+
cache_position = torch.arange(0, inputs_embeds.shape[1], device=inputs_embeds.device)
|
| 1003 |
+
|
| 1004 |
+
if position_ids is None :
|
| 1005 |
+
position_ids = cache_position.unsqueeze(0)
|
| 1006 |
+
|
| 1007 |
+
|
| 1008 |
+
|
| 1009 |
+
# Convert position_ids to a tensor if not already
|
| 1010 |
+
if not isinstance(position_ids, torch.Tensor):
|
| 1011 |
+
|
| 1012 |
+
position_ids = torch.tensor(position_ids, dtype=torch.long, device=inputs_embeds.device)
|
| 1013 |
+
|
| 1014 |
+
|
| 1015 |
+
# embed positions
|
| 1016 |
+
hidden_states = inputs_embeds
|
| 1017 |
+
|
| 1018 |
+
# normalized
|
| 1019 |
+
# FeynModel downcasts the below to float16, causing sqrt(3072)=55.4256 to become 55.5
|
| 1020 |
+
# See https://github.com/huggingface/transformers/pull/29402
|
| 1021 |
+
normalizer = torch.tensor(self.config.hidden_size**0.5, dtype=hidden_states.dtype)
|
| 1022 |
+
hidden_states = hidden_states * normalizer
|
| 1023 |
+
|
| 1024 |
+
all_hidden_states = () if output_hidden_states else None
|
| 1025 |
+
all_self_attns = () if output_attentions else None
|
| 1026 |
+
|
| 1027 |
+
for decoder_layer in self.layers:
|
| 1028 |
+
if output_hidden_states:
|
| 1029 |
+
all_hidden_states += (hidden_states,)
|
| 1030 |
+
|
| 1031 |
+
if self.gradient_checkpointing and self.training:
|
| 1032 |
+
layer_outputs = self._gradient_checkpointing_func(
|
| 1033 |
+
decoder_layer.__call__,
|
| 1034 |
+
hidden_states,
|
| 1035 |
+
causal_mask,
|
| 1036 |
+
position_ids,
|
| 1037 |
+
past_key_values,
|
| 1038 |
+
output_attentions,
|
| 1039 |
+
use_cache,
|
| 1040 |
+
cache_position,
|
| 1041 |
+
)
|
| 1042 |
+
else:
|
| 1043 |
+
layer_outputs = decoder_layer(
|
| 1044 |
+
hidden_states,
|
| 1045 |
+
attention_mask=causal_mask,
|
| 1046 |
+
position_ids=position_ids,
|
| 1047 |
+
past_key_value=past_key_values,
|
| 1048 |
+
output_attentions=output_attentions,
|
| 1049 |
+
use_cache=use_cache,
|
| 1050 |
+
cache_position=cache_position,
|
| 1051 |
+
)
|
| 1052 |
+
|
| 1053 |
+
hidden_states = layer_outputs[0]
|
| 1054 |
+
|
| 1055 |
+
if output_attentions:
|
| 1056 |
+
all_self_attns += (layer_outputs[1],)
|
| 1057 |
+
|
| 1058 |
+
hidden_states = self.norm(hidden_states)
|
| 1059 |
+
|
| 1060 |
+
# add hidden states from the last decoder layer
|
| 1061 |
+
if output_hidden_states:
|
| 1062 |
+
all_hidden_states += (hidden_states,)
|
| 1063 |
+
|
| 1064 |
+
next_cache = past_key_values if use_cache else None
|
| 1065 |
+
|
| 1066 |
+
if not return_dict:
|
| 1067 |
+
return tuple(v for v in [hidden_states, next_cache, all_hidden_states, all_self_attns] if v is not None)
|
| 1068 |
+
return BaseModelOutputWithPast(
|
| 1069 |
+
last_hidden_state=hidden_states,
|
| 1070 |
+
past_key_values=next_cache,
|
| 1071 |
+
hidden_states=all_hidden_states,
|
| 1072 |
+
attentions=all_self_attns,
|
| 1073 |
+
)
|
| 1074 |
+
|
| 1075 |
+
|
| 1076 |
+
|
| 1077 |
+
def _update_causal_mask(
|
| 1078 |
+
self,
|
| 1079 |
+
attention_mask: torch.Tensor,
|
| 1080 |
+
input_tensor: torch.Tensor,
|
| 1081 |
+
cache_position: torch.Tensor,
|
| 1082 |
+
past_key_values: Cache,
|
| 1083 |
+
output_attentions: bool,
|
| 1084 |
+
):
|
| 1085 |
+
|
| 1086 |
+
# print(f" _start _____ _update_causal_mask attention_mask {attention_mask.size()} {attention_mask} ")
|
| 1087 |
+
# Flash Attention currently doesn't support static cache but FeynModel work only with static cache.
|
| 1088 |
+
# So we will pass in attention mask as is in any case, not only when ther's padding. Then we'll use its shape
|
| 1089 |
+
# to cut out keys/values trailing 0 used in static cache. This workaround should be compile compatible
|
| 1090 |
+
# as it doesn't cause dynamic control issues.
|
| 1091 |
+
if self.config._attn_implementation == "flash_attention_2":
|
| 1092 |
+
return attention_mask
|
| 1093 |
+
|
| 1094 |
+
dtype, device = input_tensor.dtype, input_tensor.device
|
| 1095 |
+
min_dtype = torch.finfo(dtype).min
|
| 1096 |
+
sequence_length = input_tensor.shape[1]
|
| 1097 |
+
if isinstance(past_key_values, HybridCache):
|
| 1098 |
+
target_length = past_key_values.get_max_length()
|
| 1099 |
+
else:
|
| 1100 |
+
target_length = attention_mask.shape[-1] if attention_mask is not None else input_tensor.shape[1]
|
| 1101 |
+
|
| 1102 |
+
# In case the provided `attention` mask is 2D, we generate a causal mask here (4D).
|
| 1103 |
+
causal_mask = _prepare_4d_causal_attention_mask_with_cache_position(
|
| 1104 |
+
attention_mask,
|
| 1105 |
+
sequence_length=sequence_length,
|
| 1106 |
+
target_length=target_length,
|
| 1107 |
+
dtype=dtype,
|
| 1108 |
+
device=device,
|
| 1109 |
+
min_dtype=min_dtype,
|
| 1110 |
+
cache_position=cache_position,
|
| 1111 |
+
batch_size=input_tensor.shape[0],
|
| 1112 |
+
)
|
| 1113 |
+
#print(f" _end ______ _update_causal_mask causal_mask {causal_mask.size()} {causal_mask} ")
|
| 1114 |
+
return causal_mask
|
| 1115 |
+
|
| 1116 |
+
|
| 1117 |
+
|
| 1118 |
+
class FeynModelForCausalLM(Gemma2ForCausalLM):
|
| 1119 |
+
_tied_weights_keys = ["lm_head.weight"]
|
| 1120 |
+
config_class = FeynModelConfig
|
| 1121 |
+
def __init__(self, config):
|
| 1122 |
+
super().__init__(config)
|
| 1123 |
+
config.vision_config=Florence2VisionConfig.from_dict(config.vision_config)
|
| 1124 |
+
self.model = FeynModel(config)
|
| 1125 |
+
|
| 1126 |
+
# assert config.vision_config.model_type== 'davit', 'only DaViT is supported for now'
|
| 1127 |
+
self.vision_tower = DaViT.from_config(config=config.vision_config)
|
| 1128 |
+
self._build_image_projection_layers(config)
|
| 1129 |
+
|
| 1130 |
+
self.__causal_attention_mask = None
|
| 1131 |
+
|
| 1132 |
+
# Initialize weights and apply final processing
|
| 1133 |
+
self.post_init()
|
| 1134 |
+
|
| 1135 |
+
################ Vision Tower ########################
|
| 1136 |
+
def _build_image_projection_layers(self, config):
|
| 1137 |
+
image_dim_out = config.vision_config.dim_embed[-1]
|
| 1138 |
+
dim_projection = config.vision_config.projection_dim
|
| 1139 |
+
self.image_projection = nn.Parameter(
|
| 1140 |
+
torch.empty(image_dim_out, dim_projection)
|
| 1141 |
+
)
|
| 1142 |
+
self.image_proj_norm = nn.LayerNorm(dim_projection)
|
| 1143 |
+
image_pos_embed_config = config.vision_config.image_pos_embed
|
| 1144 |
+
if image_pos_embed_config['type'] == 'learned_abs_2d':
|
| 1145 |
+
self.image_pos_embed = LearnedAbsolutePositionEmbedding2D(
|
| 1146 |
+
embedding_dim=image_dim_out,
|
| 1147 |
+
num_pos=image_pos_embed_config['max_pos_embeddings']
|
| 1148 |
+
)
|
| 1149 |
+
else:
|
| 1150 |
+
raise NotImplementedError('Not implemented yet')
|
| 1151 |
+
|
| 1152 |
+
self.image_feature_source = config.vision_config.image_feature_source
|
| 1153 |
+
|
| 1154 |
+
# temporal embedding
|
| 1155 |
+
visual_temporal_embedding_config = config.vision_config.visual_temporal_embedding
|
| 1156 |
+
if visual_temporal_embedding_config['type'] == 'COSINE':
|
| 1157 |
+
self.visual_temporal_embed = PositionalEmbeddingCosine1D(
|
| 1158 |
+
embed_dim=image_dim_out,
|
| 1159 |
+
max_seq_len=visual_temporal_embedding_config['max_temporal_embeddings']
|
| 1160 |
+
)
|
| 1161 |
+
else:
|
| 1162 |
+
raise NotImplementedError('Not implemented yet')
|
| 1163 |
+
|
| 1164 |
+
|
| 1165 |
+
|
| 1166 |
+
def _merge_input_ids_with_image_features(self, image_features, inputs_embeds):
|
| 1167 |
+
batch_size, image_token_length = image_features.size()[:-1]
|
| 1168 |
+
device = image_features.device
|
| 1169 |
+
image_attention_mask = torch.ones(batch_size, image_token_length, device=device)
|
| 1170 |
+
|
| 1171 |
+
if inputs_embeds is None:
|
| 1172 |
+
return image_features, image_attention_mask
|
| 1173 |
+
|
| 1174 |
+
task_prefix_embeds = inputs_embeds
|
| 1175 |
+
task_prefix_attention_mask = torch.ones(batch_size, task_prefix_embeds.size(1), device=device)
|
| 1176 |
+
|
| 1177 |
+
# Assurer que les masques d'attention sont de deux dimensions
|
| 1178 |
+
if len(task_prefix_attention_mask.shape) == 3:
|
| 1179 |
+
task_prefix_attention_mask = task_prefix_attention_mask.squeeze(1)
|
| 1180 |
+
|
| 1181 |
+
# Vérifier la dimension de batch et ajuster si nécessaire
|
| 1182 |
+
if image_features.size(0) != task_prefix_embeds.size(0):
|
| 1183 |
+
raise ValueError("Batch sizes of image_features and task_prefix_embeds do not match")
|
| 1184 |
+
|
| 1185 |
+
# Ajouter une dimension fictive si les dimensions ne sont pas alignées
|
| 1186 |
+
if image_features.dim() < task_prefix_embeds.dim():
|
| 1187 |
+
image_features = image_features.unsqueeze(-1)
|
| 1188 |
+
elif task_prefix_embeds.dim() < image_features.dim():
|
| 1189 |
+
task_prefix_embeds = task_prefix_embeds.unsqueeze(-1)
|
| 1190 |
+
|
| 1191 |
+
# Assurer que toutes les dimensions, sauf dim=1, sont identiques
|
| 1192 |
+
if image_features.size(2) != task_prefix_embeds.size(2):
|
| 1193 |
+
# Ajuster ou signaler une erreur si les dimensions internes ne sont pas compatibles
|
| 1194 |
+
raise ValueError("Internal dimensions of image_features and task_prefix_embeds do not match")
|
| 1195 |
+
|
| 1196 |
+
inputs_embeds = torch.cat([image_features, task_prefix_embeds], dim=1)
|
| 1197 |
+
attention_mask = torch.cat([image_attention_mask, task_prefix_attention_mask], dim=1)
|
| 1198 |
+
|
| 1199 |
+
return inputs_embeds, attention_mask
|
| 1200 |
+
|
| 1201 |
+
def _encode_image(self, pixel_values):
|
| 1202 |
+
if len(pixel_values.shape) == 4:
|
| 1203 |
+
batch_size, C, H, W = pixel_values.shape
|
| 1204 |
+
T = 1
|
| 1205 |
+
x = self.vision_tower.forward_features_unpool(pixel_values)
|
| 1206 |
+
else:
|
| 1207 |
+
# Ajoute une dimension de batch au début si 'pixel_values' n'a que 3 dimensions (C, H, W)
|
| 1208 |
+
pixel_values = pixel_values.unsqueeze(0) # Ajoute une dimension de batch
|
| 1209 |
+
batch_size, C, H, W = pixel_values.shape
|
| 1210 |
+
T = 1
|
| 1211 |
+
x = self.vision_tower.forward_features_unpool(pixel_values)
|
| 1212 |
+
|
| 1213 |
+
if self.image_pos_embed is not None:
|
| 1214 |
+
x = x.view(batch_size * T, -1, x.shape[-1])
|
| 1215 |
+
num_tokens = x.shape[-2]
|
| 1216 |
+
h, w = int(num_tokens ** 0.5), int(num_tokens ** 0.5)
|
| 1217 |
+
assert h * w == num_tokens, 'only support square feature maps for now'
|
| 1218 |
+
x = x.view(batch_size * T, h, w, x.shape[-1])
|
| 1219 |
+
pos_embed = self.image_pos_embed(x)
|
| 1220 |
+
x = x + pos_embed
|
| 1221 |
+
x = x.view(batch_size, T * h*w, x.shape[-1])
|
| 1222 |
+
|
| 1223 |
+
if self.visual_temporal_embed is not None:
|
| 1224 |
+
visual_temporal_embed = self.visual_temporal_embed(x.view(batch_size, T, -1, x.shape[-1])[:, :, 0])
|
| 1225 |
+
x = x.view(batch_size, T, -1, x.shape[-1]) + visual_temporal_embed.view(1, T, 1, x.shape[-1])
|
| 1226 |
+
|
| 1227 |
+
x_feat_dict = {}
|
| 1228 |
+
|
| 1229 |
+
spatial_avg_pool_x = x.view(batch_size, T, -1, x.shape[-1]).mean(dim=2)
|
| 1230 |
+
x_feat_dict['spatial_avg_pool'] = spatial_avg_pool_x
|
| 1231 |
+
|
| 1232 |
+
temporal_avg_pool_x = x.view(batch_size, T, -1, x.shape[-1]).mean(dim=1)
|
| 1233 |
+
x_feat_dict['temporal_avg_pool'] = temporal_avg_pool_x
|
| 1234 |
+
|
| 1235 |
+
x = x.view(batch_size, T, -1, x.shape[-1])[:, -1]
|
| 1236 |
+
x_feat_dict['last_frame'] = x
|
| 1237 |
+
|
| 1238 |
+
new_x = []
|
| 1239 |
+
for _image_feature_source in self.image_feature_source:
|
| 1240 |
+
if _image_feature_source not in x_feat_dict:
|
| 1241 |
+
raise ValueError('invalid image feature source: {}'.format(_image_feature_source))
|
| 1242 |
+
new_x.append(x_feat_dict[_image_feature_source])
|
| 1243 |
+
|
| 1244 |
+
x = torch.cat(new_x, dim=1)
|
| 1245 |
+
|
| 1246 |
+
x = x @ self.image_projection
|
| 1247 |
+
x = self.image_proj_norm(x)
|
| 1248 |
+
|
| 1249 |
+
return x
|
| 1250 |
+
#######################################################
|
| 1251 |
+
|
| 1252 |
+
def get_input_embeddings(self):
|
| 1253 |
+
return self.model.embed_tokens
|
| 1254 |
+
|
| 1255 |
+
def set_input_embeddings(self, value):
|
| 1256 |
+
self.model.embed_tokens = value
|
| 1257 |
+
|
| 1258 |
+
def get_output_embeddings(self):
|
| 1259 |
+
return self.lm_head
|
| 1260 |
+
|
| 1261 |
+
def set_output_embeddings(self, new_embeddings):
|
| 1262 |
+
self.lm_head = new_embeddings
|
| 1263 |
+
|
| 1264 |
+
def set_decoder(self, decoder):
|
| 1265 |
+
self.model = decoder
|
| 1266 |
+
|
| 1267 |
+
def get_decoder(self):
|
| 1268 |
+
return self.model
|
| 1269 |
+
|
| 1270 |
+
@add_start_docstrings_to_model_forward(FEYNMODEL_INPUTS_DOCSTRING)
|
| 1271 |
+
@replace_return_docstrings(output_type=CausalLMOutputWithPast, config_class=_CONFIG_FOR_DOC)
|
| 1272 |
+
def forward(
|
| 1273 |
+
self,
|
| 1274 |
+
input_ids: torch.LongTensor = None,
|
| 1275 |
+
pixel_values: Optional[torch.Tensor] = None,
|
| 1276 |
+
attention_mask: Optional[torch.Tensor] = None,
|
| 1277 |
+
position_ids: Optional[torch.LongTensor] = None,
|
| 1278 |
+
past_key_values: Optional[Union[Cache, List[torch.FloatTensor]]] = None,
|
| 1279 |
+
inputs_embeds: Optional[torch.FloatTensor] = None,
|
| 1280 |
+
labels: Optional[torch.LongTensor] = None,
|
| 1281 |
+
use_cache: Optional[bool] = None,
|
| 1282 |
+
output_attentions: Optional[bool] = None,
|
| 1283 |
+
output_hidden_states: Optional[bool] = None,
|
| 1284 |
+
return_dict: Optional[bool] = None,
|
| 1285 |
+
cache_position: Optional[torch.LongTensor] = None,
|
| 1286 |
+
**kwargs,
|
| 1287 |
+
) -> Union[Tuple, CausalLMOutputWithPast]:
|
| 1288 |
+
r"""
|
| 1289 |
+
Args:
|
| 1290 |
+
labels (`torch.LongTensor` of shape `(batch_size, sequence_length)`, *optional*):
|
| 1291 |
+
Labels for computing the masked language modeling loss. Indices should either be in `[0, ...,
|
| 1292 |
+
config.vocab_size]` or -100 (see `input_ids` docstring). Tokens with indices set to `-100` are ignored
|
| 1293 |
+
(masked), the loss is only computed for the tokens with labels in `[0, ..., config.vocab_size]`.
|
| 1294 |
+
|
| 1295 |
+
Returns:
|
| 1296 |
+
|
| 1297 |
+
Example:
|
| 1298 |
+
|
| 1299 |
+
```python
|
| 1300 |
+
>>> from transformers import AutoTokenizer, GemmaForCausalLM
|
| 1301 |
+
|
| 1302 |
+
>>> model = GemmaForCausalLM.from_pretrained("google/gemma-2-9b")
|
| 1303 |
+
>>> tokenizer = AutoTokenizer.from_pretrained("google/gemma-2-9b")
|
| 1304 |
+
|
| 1305 |
+
>>> prompt = "What is your favorite condiment?"
|
| 1306 |
+
>>> inputs = tokenizer(prompt, return_tensors="pt")
|
| 1307 |
+
|
| 1308 |
+
>>> # Generate
|
| 1309 |
+
>>> generate_ids = model.generate(inputs.input_ids, max_length=30)
|
| 1310 |
+
>>> tokenizer.batch_decode(generate_ids, skip_special_tokens=True, clean_up_tokenization_spaces=False)[0]
|
| 1311 |
+
"What is your favorite condiment?"
|
| 1312 |
+
```"""
|
| 1313 |
+
|
| 1314 |
+
|
| 1315 |
+
if self.training and self.config._attn_implementation != "eager":
|
| 1316 |
+
logger.warning_once(
|
| 1317 |
+
"It is strongly recommended to train FeynModel models with the `eager` attention implementation "
|
| 1318 |
+
f"instead of `{self.config._attn_implementation}`. Use `eager` with `AutoModelForCausalLM.from_pretrained('<path-to-checkpoint>', attn_implementation='eager')`."
|
| 1319 |
+
)
|
| 1320 |
+
output_attentions = output_attentions if output_attentions is not None else self.config.output_attentions
|
| 1321 |
+
output_hidden_states = (
|
| 1322 |
+
output_hidden_states if output_hidden_states is not None else self.config.output_hidden_states
|
| 1323 |
+
)
|
| 1324 |
+
return_dict = return_dict if return_dict is not None else self.config.use_return_dict
|
| 1325 |
+
|
| 1326 |
+
if pixel_values is not None:
|
| 1327 |
+
self.model.mode='vlm'
|
| 1328 |
+
|
| 1329 |
+
if input_ids is not None:
|
| 1330 |
+
inputs_embeds = self.get_input_embeddings()(input_ids)
|
| 1331 |
+
image_features = self._encode_image(pixel_values)
|
| 1332 |
+
inputs_embeds, causal_attention_mask = self._merge_input_ids_with_image_features(image_features, inputs_embeds )
|
| 1333 |
+
causal_attention_mask = create_git_attention_mask(tgt=input_ids, memory=image_features,max_length=2048)
|
| 1334 |
+
causal_attention_mask=causal_attention_mask.to(input_ids.device)
|
| 1335 |
+
self.__causal_attention_mask=causal_attention_mask
|
| 1336 |
+
|
| 1337 |
+
# decoder outputs consists of (dec_features, layer_state, dec_hidden, dec_attn)
|
| 1338 |
+
if pixel_values is not None:
|
| 1339 |
+
outputs = self.model(
|
| 1340 |
+
input_ids=None,
|
| 1341 |
+
attention_mask=causal_attention_mask,
|
| 1342 |
+
position_ids=position_ids,
|
| 1343 |
+
past_key_values=past_key_values,
|
| 1344 |
+
inputs_embeds=inputs_embeds,
|
| 1345 |
+
use_cache=use_cache,
|
| 1346 |
+
output_attentions=output_attentions,
|
| 1347 |
+
output_hidden_states=output_hidden_states,
|
| 1348 |
+
return_dict=return_dict,
|
| 1349 |
+
cache_position=cache_position,
|
| 1350 |
+
causal_attention_mask=causal_attention_mask,
|
| 1351 |
+
)
|
| 1352 |
+
else:
|
| 1353 |
+
outputs = self.model(
|
| 1354 |
+
input_ids=input_ids,
|
| 1355 |
+
attention_mask=attention_mask,
|
| 1356 |
+
position_ids=position_ids,
|
| 1357 |
+
past_key_values=past_key_values,
|
| 1358 |
+
inputs_embeds=inputs_embeds,
|
| 1359 |
+
use_cache=use_cache,
|
| 1360 |
+
output_attentions=output_attentions,
|
| 1361 |
+
output_hidden_states=output_hidden_states,
|
| 1362 |
+
return_dict=return_dict,
|
| 1363 |
+
cache_position=cache_position,
|
| 1364 |
+
causal_attention_mask=self.__causal_attention_mask,
|
| 1365 |
+
)
|
| 1366 |
+
|
| 1367 |
+
|
| 1368 |
+
hidden_states = outputs[0]
|
| 1369 |
+
logits = self.lm_head(hidden_states)
|
| 1370 |
+
|
| 1371 |
+
if self.config.final_logit_softcapping is not None:
|
| 1372 |
+
logits = logits / self.config.final_logit_softcapping
|
| 1373 |
+
logits = torch.tanh(logits)
|
| 1374 |
+
logits = logits * self.config.final_logit_softcapping
|
| 1375 |
+
|
| 1376 |
+
|
| 1377 |
+
logits = logits.float()
|
| 1378 |
+
loss = None
|
| 1379 |
+
if labels is not None:
|
| 1380 |
+
# we are doing next-token prediction; shift prediction scores and input ids by one
|
| 1381 |
+
num_image_tokens = self.model.image_patch_tokens
|
| 1382 |
+
shifted_logits = logits[:, num_image_tokens:-1, :].contiguous()
|
| 1383 |
+
labels = labels[:, 1:].contiguous()
|
| 1384 |
+
loss_fct = CrossEntropyLoss()
|
| 1385 |
+
loss = loss_fct(shifted_logits.view(-1, self.config.vocab_size), labels.view(-1))
|
| 1386 |
+
|
| 1387 |
+
if not return_dict:
|
| 1388 |
+
|
| 1389 |
+
output = (logits,) + outputs[1:]
|
| 1390 |
+
return (loss,) + output if loss is not None else output
|
| 1391 |
+
|
| 1392 |
+
return CausalLMOutputWithPast(
|
| 1393 |
+
loss=loss,
|
| 1394 |
+
logits=logits,
|
| 1395 |
+
past_key_values=outputs.past_key_values,
|
| 1396 |
+
hidden_states=outputs.hidden_states,
|
| 1397 |
+
attentions=outputs.attentions,
|
| 1398 |
+
)
|
| 1399 |
+
|
| 1400 |
+
def prepare_inputs_for_generation(
|
| 1401 |
+
self,
|
| 1402 |
+
input_ids,
|
| 1403 |
+
past_key_values=None,
|
| 1404 |
+
attention_mask=None,
|
| 1405 |
+
inputs_embeds=None,
|
| 1406 |
+
cache_position=None,
|
| 1407 |
+
position_ids=None,
|
| 1408 |
+
use_cache=True,
|
| 1409 |
+
**kwargs,
|
| 1410 |
+
):
|
| 1411 |
+
|
| 1412 |
+
|
| 1413 |
+
# If we have cache: let's slice `input_ids` through `cache_position`, to keep only the unprocessed tokens
|
| 1414 |
+
# Exception 1: when passing input_embeds, input_ids may be missing entries
|
| 1415 |
+
# Exception 2: some generation methods do special slicing of input_ids, so we don't need to do it here
|
| 1416 |
+
if past_key_values is not None:
|
| 1417 |
+
if inputs_embeds is not None: # Exception 1
|
| 1418 |
+
input_ids = input_ids[:, -cache_position.shape[0] :]
|
| 1419 |
+
elif input_ids.shape[1] != cache_position.shape[0]: # Default case (the "else", a no op, is Exception 2)
|
| 1420 |
+
input_ids = input_ids[:, cache_position]
|
| 1421 |
+
|
| 1422 |
+
if attention_mask is not None and position_ids is None:
|
| 1423 |
+
# create position_ids on the fly for batch generation
|
| 1424 |
+
position_ids = attention_mask.long().cumsum(-1) - 1
|
| 1425 |
+
position_ids.masked_fill_(attention_mask == 0, 1)
|
| 1426 |
+
if past_key_values:
|
| 1427 |
+
# print(f"+-+-+-+-+-+-+++ past_key_values +-+-+++- position_ids {position_ids.size()} ================= ")
|
| 1428 |
+
position_ids = position_ids[:, -input_ids.shape[1] :]
|
| 1429 |
+
# This `clone` call is needed to avoid recapturing cuda graphs with `torch.compile`'s
|
| 1430 |
+
# `mode="reduce-overhead`, as otherwise the input `position_ids` would have various stride
|
| 1431 |
+
# during the decoding. Here, simply using `.contiguous()` is not sufficient as in the
|
| 1432 |
+
# batch size = 1 case, `position_ids` is already contiguous but with varying stride
|
| 1433 |
+
# which retriggers a capture.
|
| 1434 |
+
position_ids = position_ids.clone(memory_format=torch.contiguous_format)
|
| 1435 |
+
# print(f"+-+-+-+-+-+-+++ past_key_values +-+-+++- position_ids cmlone ==> {position_ids.size()} ================= ")
|
| 1436 |
+
|
| 1437 |
+
# if `inputs_embeds` are passed, we only want to use them in the 1st generation step
|
| 1438 |
+
if inputs_embeds is not None and cache_position[0] == 0:
|
| 1439 |
+
#print(">>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>> first generation step>>>>>>>>>>>>>>>>>>>>>>>>>>>>>><")
|
| 1440 |
+
model_inputs = {"inputs_embeds": inputs_embeds}
|
| 1441 |
+
else:
|
| 1442 |
+
# The clone here is for the same reason as for `position_ids`.
|
| 1443 |
+
# print(">>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>> The clone here is for the same reason as for `position_ids` ==> input_ids input_ids.clone.>>>>>>>>>>>>>>>>>>>>>>>>>>>>>><")
|
| 1444 |
+
model_inputs = {"input_ids": input_ids.clone(memory_format=torch.contiguous_format)}
|
| 1445 |
+
|
| 1446 |
+
if isinstance(past_key_values, HybridCache) and attention_mask.ndim == 2:
|
| 1447 |
+
if inputs_embeds is not None and input_ids.size(1)!= 0 :
|
| 1448 |
+
###################### V ############## add _ for _ = inputs_embeds.shape
|
| 1449 |
+
batch_size, sequence_length, _ = inputs_embeds.shape
|
| 1450 |
+
device = inputs_embeds.device
|
| 1451 |
+
#print(f"1111111 +-+-+-+-+-+-+-+-+-+- sequence_length = inputs_embeds {sequence_length}")
|
| 1452 |
+
else:
|
| 1453 |
+
batch_size, sequence_length = position_ids.shape
|
| 1454 |
+
device = input_ids.device
|
| 1455 |
+
#print(f"22222222 +-+-+-+-+-+-+-+-+-+- sequence_length = input_ids.shape {sequence_length}")
|
| 1456 |
+
|
| 1457 |
+
dtype = self.lm_head.weight.dtype
|
| 1458 |
+
min_dtype = torch.finfo(dtype).min
|
| 1459 |
+
|
| 1460 |
+
attention_mask = _prepare_4d_causal_attention_mask_with_cache_position(
|
| 1461 |
+
attention_mask,
|
| 1462 |
+
sequence_length=sequence_length,
|
| 1463 |
+
target_length=past_key_values.get_max_length(),
|
| 1464 |
+
dtype=dtype,
|
| 1465 |
+
device=device,
|
| 1466 |
+
min_dtype=min_dtype,
|
| 1467 |
+
cache_position=cache_position,
|
| 1468 |
+
batch_size=batch_size,
|
| 1469 |
+
)
|
| 1470 |
+
|
| 1471 |
+
|
| 1472 |
+
model_inputs.update(
|
| 1473 |
+
{
|
| 1474 |
+
"position_ids": position_ids,
|
| 1475 |
+
"cache_position": cache_position,
|
| 1476 |
+
"past_key_values": past_key_values,
|
| 1477 |
+
"use_cache": use_cache,
|
| 1478 |
+
"attention_mask": attention_mask,
|
| 1479 |
+
}
|
| 1480 |
+
)
|
| 1481 |
+
return model_inputs
|
| 1482 |
+
|
| 1483 |
+
def generate(
|
| 1484 |
+
self,
|
| 1485 |
+
input_ids,
|
| 1486 |
+
pixel_values=None,
|
| 1487 |
+
max_length=None,
|
| 1488 |
+
do_sample=True,
|
| 1489 |
+
temperature=0.7,
|
| 1490 |
+
**kwargs
|
| 1491 |
+
):
|
| 1492 |
+
|
| 1493 |
+
|
| 1494 |
+
if pixel_values is not None:
|
| 1495 |
+
if input_ids is not None:
|
| 1496 |
+
|
| 1497 |
+
inputs_embeds = self.get_input_embeddings()(input_ids)
|
| 1498 |
+
print("pixels")
|
| 1499 |
+
image_features = self._encode_image(pixel_values)
|
| 1500 |
+
inputs_embeds, causal_attention_mask = self._merge_input_ids_with_image_features(image_features, inputs_embeds )
|
| 1501 |
+
causal_attention_mask = create_git_attention_mask(tgt=input_ids, memory=image_features,max_length=max_length)
|
| 1502 |
+
causal_attention_mask=causal_attention_mask.to(input_ids.device)
|
| 1503 |
+
self.__causal_attention_mask=causal_attention_mask
|
| 1504 |
+
self.model.mode='vlm'
|
| 1505 |
+
result = super().generate(
|
| 1506 |
+
input_ids=None,
|
| 1507 |
+
inputs_embeds=inputs_embeds,
|
| 1508 |
+
max_length=max_length,
|
| 1509 |
+
do_sample=do_sample,
|
| 1510 |
+
temperature=temperature,
|
| 1511 |
+
**kwargs
|
| 1512 |
+
)
|
| 1513 |
+
|
| 1514 |
+
else:
|
| 1515 |
+
|
| 1516 |
+
self.model.mode=='llm'
|
| 1517 |
+
result = super().generate(
|
| 1518 |
+
input_ids=input_ids,
|
| 1519 |
+
#inputs_embeds=None,
|
| 1520 |
+
max_length=max_length,
|
| 1521 |
+
do_sample=do_sample,
|
| 1522 |
+
temperature=temperature,
|
| 1523 |
+
**kwargs
|
| 1524 |
+
)
|
| 1525 |
+
self.__causal_attention_mask = None
|
| 1526 |
+
|
| 1527 |
+
return result
|
| 1528 |
+
|
preprocessor_config.json
ADDED
|
@@ -0,0 +1,33 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
+
{
|
| 2 |
+
"auto_map": {
|
| 3 |
+
"AutoProcessor": "processing_florence2.Florence2Processor"
|
| 4 |
+
},
|
| 5 |
+
"crop_size": {
|
| 6 |
+
"height": 768,
|
| 7 |
+
"width": 768
|
| 8 |
+
},
|
| 9 |
+
"do_center_crop": false,
|
| 10 |
+
"do_convert_rgb": null,
|
| 11 |
+
"do_normalize": true,
|
| 12 |
+
"do_rescale": true,
|
| 13 |
+
"do_resize": true,
|
| 14 |
+
"image_mean": [
|
| 15 |
+
0.485,
|
| 16 |
+
0.456,
|
| 17 |
+
0.406
|
| 18 |
+
],
|
| 19 |
+
"image_processor_type": "CLIPImageProcessor",
|
| 20 |
+
"image_seq_length": 577,
|
| 21 |
+
"image_std": [
|
| 22 |
+
0.229,
|
| 23 |
+
0.224,
|
| 24 |
+
0.225
|
| 25 |
+
],
|
| 26 |
+
"processor_class": "Florence2Processor",
|
| 27 |
+
"resample": 3,
|
| 28 |
+
"rescale_factor": 0.00392156862745098,
|
| 29 |
+
"size": {
|
| 30 |
+
"height": 768,
|
| 31 |
+
"width": 768
|
| 32 |
+
}
|
| 33 |
+
}
|
processing_florence2.py
ADDED
|
@@ -0,0 +1,1088 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
+
# coding=utf-8
|
| 2 |
+
# Copyright 2024 Microsoft and The HuggingFace Inc. team.
|
| 3 |
+
#
|
| 4 |
+
# Licensed under the Apache License, Version 2.0 (the "License");
|
| 5 |
+
# you may not use this file except in compliance with the License.
|
| 6 |
+
# You may obtain a copy of the License at
|
| 7 |
+
#
|
| 8 |
+
# http://www.apache.org/licenses/LICENSE-2.0
|
| 9 |
+
#
|
| 10 |
+
# Unless required by applicable law or agreed to in writing, software
|
| 11 |
+
# distributed under the License is distributed on an "AS IS" BASIS,
|
| 12 |
+
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
|
| 13 |
+
# See the License for the specific language governing permissions and
|
| 14 |
+
# limitations under the License.
|
| 15 |
+
"""
|
| 16 |
+
Processor class for Florence-2.
|
| 17 |
+
"""
|
| 18 |
+
|
| 19 |
+
import re
|
| 20 |
+
import logging
|
| 21 |
+
from typing import List, Optional, Union
|
| 22 |
+
import numpy as np
|
| 23 |
+
|
| 24 |
+
import torch
|
| 25 |
+
|
| 26 |
+
from transformers.feature_extraction_utils import BatchFeature
|
| 27 |
+
from transformers.image_utils import ImageInput, is_valid_image
|
| 28 |
+
from transformers.processing_utils import ProcessorMixin
|
| 29 |
+
from transformers.tokenization_utils_base import (
|
| 30 |
+
PaddingStrategy,
|
| 31 |
+
PreTokenizedInput,
|
| 32 |
+
TextInput,
|
| 33 |
+
TruncationStrategy,
|
| 34 |
+
)
|
| 35 |
+
from transformers.utils import TensorType
|
| 36 |
+
|
| 37 |
+
|
| 38 |
+
logger = logging.getLogger(__name__)
|
| 39 |
+
|
| 40 |
+
# Copied from transformers.models.idefics2.processing_idefics2.is_url
|
| 41 |
+
def is_url(val) -> bool:
|
| 42 |
+
return isinstance(val, str) and val.startswith("http")
|
| 43 |
+
|
| 44 |
+
# Copied from transformers.models.idefics2.processing_idefics2.is_image_or_image_url
|
| 45 |
+
def is_image_or_image_url(elem):
|
| 46 |
+
return is_url(elem) or is_valid_image(elem)
|
| 47 |
+
|
| 48 |
+
|
| 49 |
+
def _is_str_or_image(elem):
|
| 50 |
+
return isinstance(elem, (str)) or is_image_or_image_url(elem)
|
| 51 |
+
|
| 52 |
+
|
| 53 |
+
class Florence2Processor(ProcessorMixin):
|
| 54 |
+
r"""
|
| 55 |
+
Constructs a Florence2 processor which wraps a Florence2 image processor and a Florence2 tokenizer into a single processor.
|
| 56 |
+
|
| 57 |
+
[`Florence2Processor`] offers all the functionalities of [`CLIPImageProcessor`] and [`BartTokenizerFast`]. See the
|
| 58 |
+
[`~Florence2Processor.__call__`] and [`~Florence2Processor.decode`] for more information.
|
| 59 |
+
|
| 60 |
+
Args:
|
| 61 |
+
image_processor ([`CLIPImageProcessor`], *optional*):
|
| 62 |
+
The image processor is a required input.
|
| 63 |
+
tokenizer ([`BartTokenizerFast`], *optional*):
|
| 64 |
+
The tokenizer is a required input.
|
| 65 |
+
"""
|
| 66 |
+
|
| 67 |
+
attributes = ["image_processor", "tokenizer"]
|
| 68 |
+
image_processor_class = "CLIPImageProcessor"
|
| 69 |
+
tokenizer_class = ("BartTokenizer", "BartTokenizerFast")
|
| 70 |
+
|
| 71 |
+
def __init__(
|
| 72 |
+
self,
|
| 73 |
+
image_processor=None,
|
| 74 |
+
tokenizer=None,
|
| 75 |
+
):
|
| 76 |
+
if image_processor is None:
|
| 77 |
+
raise ValueError("You need to specify an `image_processor`.")
|
| 78 |
+
if tokenizer is None:
|
| 79 |
+
raise ValueError("You need to specify a `tokenizer`.")
|
| 80 |
+
if not hasattr(image_processor, "image_seq_length"):
|
| 81 |
+
raise ValueError("Image processor is missing an `image_seq_length` attribute.")
|
| 82 |
+
|
| 83 |
+
self.image_seq_length = image_processor.image_seq_length
|
| 84 |
+
|
| 85 |
+
tokens_to_add = {
|
| 86 |
+
'additional_special_tokens': \
|
| 87 |
+
tokenizer.additional_special_tokens + \
|
| 88 |
+
['<od>', '</od>', '<ocr>', '</ocr>'] + \
|
| 89 |
+
[f'<loc_{x}>' for x in range(1000)] + \
|
| 90 |
+
['<cap>', '</cap>', '<ncap>', '</ncap>','<dcap>', '</dcap>', '<grounding>', '</grounding>', '<seg>', '</seg>', '<sep>', '<region_cap>', '</region_cap>', '<region_to_desciption>', '</region_to_desciption>', '<proposal>', '</proposal>', '<poly>', '</poly>', '<and>']
|
| 91 |
+
}
|
| 92 |
+
tokenizer.add_special_tokens(tokens_to_add)
|
| 93 |
+
|
| 94 |
+
self.tasks_answer_post_processing_type = {
|
| 95 |
+
'<OCR>': 'pure_text',
|
| 96 |
+
'<OCR_WITH_REGION>': 'ocr',
|
| 97 |
+
'<CAPTION>': 'pure_text',
|
| 98 |
+
'<DETAILED_CAPTION>': 'pure_text',
|
| 99 |
+
'<MORE_DETAILED_CAPTION>': 'pure_text',
|
| 100 |
+
'<OD>': 'description_with_bboxes',
|
| 101 |
+
'<DENSE_REGION_CAPTION>': 'description_with_bboxes',
|
| 102 |
+
'<CAPTION_TO_PHRASE_GROUNDING>': "phrase_grounding",
|
| 103 |
+
'<REFERRING_EXPRESSION_SEGMENTATION>': 'polygons',
|
| 104 |
+
'<REGION_TO_SEGMENTATION>': 'polygons',
|
| 105 |
+
'<OPEN_VOCABULARY_DETECTION>': 'description_with_bboxes_or_polygons',
|
| 106 |
+
'<REGION_TO_CATEGORY>': 'pure_text',
|
| 107 |
+
'<REGION_TO_DESCRIPTION>': 'pure_text',
|
| 108 |
+
'<REGION_TO_OCR>': 'pure_text',
|
| 109 |
+
'<REGION_PROPOSAL>': 'bboxes'
|
| 110 |
+
}
|
| 111 |
+
|
| 112 |
+
self.task_prompts_without_inputs = {
|
| 113 |
+
'<OCR>': 'What is the text in the image?',
|
| 114 |
+
'<OCR_WITH_REGION>': 'What is the text in the image, with regions?',
|
| 115 |
+
'<CAPTION>': 'What does the image describe?',
|
| 116 |
+
'<DETAILED_CAPTION>': 'Describe in detail what is shown in the image.',
|
| 117 |
+
'<MORE_DETAILED_CAPTION>': 'Describe with a paragraph what is shown in the image.',
|
| 118 |
+
'<OD>': 'Locate the objects with category name in the image.',
|
| 119 |
+
'<DENSE_REGION_CAPTION>': 'Locate the objects in the image, with their descriptions.',
|
| 120 |
+
'<REGION_PROPOSAL>': 'Locate the region proposals in the image.'
|
| 121 |
+
}
|
| 122 |
+
|
| 123 |
+
self.task_prompts_with_input = {
|
| 124 |
+
'<CAPTION_TO_PHRASE_GROUNDING>': "Locate the phrases in the caption: {input}",
|
| 125 |
+
'<REFERRING_EXPRESSION_SEGMENTATION>': 'Locate {input} in the image with mask',
|
| 126 |
+
'<REGION_TO_SEGMENTATION>': 'What is the polygon mask of region {input}',
|
| 127 |
+
'<OPEN_VOCABULARY_DETECTION>': 'Locate {input} in the image.',
|
| 128 |
+
'<REGION_TO_CATEGORY>': 'What is the region {input}?',
|
| 129 |
+
'<REGION_TO_DESCRIPTION>': 'What does the region {input} describe?',
|
| 130 |
+
'<REGION_TO_OCR>': 'What text is in the region {input}?',
|
| 131 |
+
}
|
| 132 |
+
|
| 133 |
+
self.post_processor = Florence2PostProcesser(tokenizer=tokenizer)
|
| 134 |
+
|
| 135 |
+
|
| 136 |
+
super().__init__(image_processor, tokenizer)
|
| 137 |
+
|
| 138 |
+
def _construct_prompts(self, text):
|
| 139 |
+
# replace the task tokens with the task prompts if task token is in the text
|
| 140 |
+
prompts = []
|
| 141 |
+
for _text in text:
|
| 142 |
+
# 1. fixed task prompts without additional inputs
|
| 143 |
+
for task_token, task_prompt in self.task_prompts_without_inputs.items():
|
| 144 |
+
if task_token in _text:
|
| 145 |
+
assert _text == task_token, f"Task token {task_token} should be the only token in the text."
|
| 146 |
+
_text = task_prompt
|
| 147 |
+
break
|
| 148 |
+
# 2. task prompts with additional inputs
|
| 149 |
+
for task_token, task_prompt in self.task_prompts_with_input.items():
|
| 150 |
+
if task_token in _text:
|
| 151 |
+
_text = task_prompt.format(input=_text.replace(task_token, ''))
|
| 152 |
+
break
|
| 153 |
+
prompts.append(_text)
|
| 154 |
+
return prompts
|
| 155 |
+
|
| 156 |
+
def __call__(
|
| 157 |
+
self,
|
| 158 |
+
text: Union[TextInput, PreTokenizedInput, List[TextInput], List[PreTokenizedInput]] = None,
|
| 159 |
+
images: ImageInput = None,
|
| 160 |
+
tokenize_newline_separately: bool = True,
|
| 161 |
+
padding: Union[bool, str, PaddingStrategy] = False,
|
| 162 |
+
truncation: Union[bool, str, TruncationStrategy] = None,
|
| 163 |
+
max_length=None,
|
| 164 |
+
return_tensors: Optional[Union[str, TensorType]] = TensorType.PYTORCH,
|
| 165 |
+
do_resize: bool = None,
|
| 166 |
+
do_normalize: bool = None,
|
| 167 |
+
image_mean: Optional[Union[float, List[float]]] = None,
|
| 168 |
+
image_std: Optional[Union[float, List[float]]] = None,
|
| 169 |
+
data_format: Optional["ChannelDimension"] = "channels_first", # noqa: F821
|
| 170 |
+
input_data_format: Optional[
|
| 171 |
+
Union[str, "ChannelDimension"] # noqa: F821
|
| 172 |
+
] = None,
|
| 173 |
+
resample: "PILImageResampling" = None, # noqa: F821
|
| 174 |
+
do_convert_rgb: bool = None,
|
| 175 |
+
do_thumbnail: bool = None,
|
| 176 |
+
do_align_long_axis: bool = None,
|
| 177 |
+
do_rescale: bool = None,
|
| 178 |
+
) -> BatchFeature:
|
| 179 |
+
"""
|
| 180 |
+
Main method to prepare for the model one or several sequences(s) and image(s). This method forwards the `text`
|
| 181 |
+
and `kwargs` arguments to BartTokenizerFast's [`~BartTokenizerFast.__call__`] if `text` is not `None` to encode
|
| 182 |
+
the text. To prepare the image(s), this method forwards the `images` and `kwrags` arguments to
|
| 183 |
+
CLIPImageProcessor's [`~CLIPImageProcessor.__call__`] if `images` is not `None`. Please refer to the doctsring
|
| 184 |
+
of the above two methods for more information.
|
| 185 |
+
|
| 186 |
+
Args:
|
| 187 |
+
text (`str`, `List[str]`, `List[List[str]]`):
|
| 188 |
+
The sequence or batch of sequences to be encoded. Each sequence can be a string or a list of strings
|
| 189 |
+
(pretokenized string). If the sequences are provided as list of strings (pretokenized), you must set
|
| 190 |
+
`is_split_into_words=True` (to lift the ambiguity with a batch of sequences).
|
| 191 |
+
images (`PIL.Image.Image`, `np.ndarray`, `torch.Tensor`, `List[PIL.Image.Image]`, `List[np.ndarray]`, `List[torch.Tensor]`):
|
| 192 |
+
The image or batch of images to be prepared. Each image can be a PIL image, NumPy array or PyTorch
|
| 193 |
+
tensor. In case of a NumPy array/PyTorch tensor, each image should be of shape (C, H, W), where C is a
|
| 194 |
+
number of channels, H and W are image height and width.
|
| 195 |
+
tokenize_newline_separately (`bool`, defaults to `True`):
|
| 196 |
+
Adds a separately tokenized '\n' at the end of the prompt.
|
| 197 |
+
padding (`bool`, `str` or [`~utils.PaddingStrategy`], *optional*, defaults to `False`):
|
| 198 |
+
Select a strategy to pad the returned sequences (according to the model's padding side and padding
|
| 199 |
+
index) among:
|
| 200 |
+
- `True` or `'longest'`: Pad to the longest sequence in the batch (or no padding if only a single
|
| 201 |
+
sequence if provided).
|
| 202 |
+
- `'max_length'`: Pad to a maximum length specified with the argument `max_length` or to the maximum
|
| 203 |
+
acceptable input length for the model if that argument is not provided.
|
| 204 |
+
- `False` or `'do_not_pad'` (default): No padding (i.e., can output a batch with sequences of different
|
| 205 |
+
lengths).
|
| 206 |
+
max_length (`int`, *optional*):
|
| 207 |
+
Maximum length of the returned list and optionally padding length (see above).
|
| 208 |
+
truncation (`bool`, *optional*):
|
| 209 |
+
Activates truncation to cut input sequences longer than `max_length` to `max_length`.
|
| 210 |
+
return_tensors (`str` or [`~utils.TensorType`], *optional*):
|
| 211 |
+
If set, will return tensors of a particular framework. Acceptable values are:
|
| 212 |
+
|
| 213 |
+
- `'tf'`: Return TensorFlow `tf.constant` objects.
|
| 214 |
+
- `'pt'`: Return PyTorch `torch.Tensor` objects.
|
| 215 |
+
- `'np'`: Return NumPy `np.ndarray` objects.
|
| 216 |
+
- `'jax'`: Return JAX `jnp.ndarray` objects.
|
| 217 |
+
|
| 218 |
+
Returns:
|
| 219 |
+
[`BatchFeature`]: A [`BatchFeature`] with the following fields:
|
| 220 |
+
|
| 221 |
+
- **input_ids** -- List of token ids to be fed to a model. Returned when `text` is not `None`. If `suffix`
|
| 222 |
+
is provided, the `input_ids` will also contain the suffix input ids.
|
| 223 |
+
- **attention_mask** -- List of indices specifying which tokens should be attended to by the model (when
|
| 224 |
+
`return_attention_mask=True` or if *"attention_mask"* is in `self.model_input_names` and if `text` is not
|
| 225 |
+
`None`).
|
| 226 |
+
- **pixel_values** -- Pixel values to be fed to a model. Returned when `images` is not `None`.
|
| 227 |
+
- **labels** -- Labels compatible with training if `suffix` is not None
|
| 228 |
+
"""
|
| 229 |
+
|
| 230 |
+
return_token_type_ids = False
|
| 231 |
+
|
| 232 |
+
if images is None:
|
| 233 |
+
raise ValueError("`images` are expected as arguments to a `Florence2Processor` instance.")
|
| 234 |
+
if text is None:
|
| 235 |
+
logger.warning_once(
|
| 236 |
+
"You are using Florence-2 without a text prompt."
|
| 237 |
+
)
|
| 238 |
+
text = ""
|
| 239 |
+
|
| 240 |
+
if isinstance(text, List) and isinstance(images, List):
|
| 241 |
+
if len(images) < len(text):
|
| 242 |
+
raise ValueError(
|
| 243 |
+
f"Received {len(images)} images for {len(text)} prompts. Each prompt should be associated with an image."
|
| 244 |
+
)
|
| 245 |
+
if _is_str_or_image(text):
|
| 246 |
+
text = [text]
|
| 247 |
+
elif isinstance(text, list) and _is_str_or_image(text[0]):
|
| 248 |
+
pass
|
| 249 |
+
|
| 250 |
+
pixel_values = self.image_processor(
|
| 251 |
+
images,
|
| 252 |
+
do_resize=do_resize,
|
| 253 |
+
do_normalize=do_normalize,
|
| 254 |
+
return_tensors=return_tensors,
|
| 255 |
+
image_mean=image_mean,
|
| 256 |
+
image_std=image_std,
|
| 257 |
+
input_data_format=input_data_format,
|
| 258 |
+
data_format=data_format,
|
| 259 |
+
resample=resample,
|
| 260 |
+
do_convert_rgb=do_convert_rgb,
|
| 261 |
+
)["pixel_values"]
|
| 262 |
+
|
| 263 |
+
if max_length is not None:
|
| 264 |
+
max_length -= self.image_seq_length # max_length has to account for the image tokens
|
| 265 |
+
|
| 266 |
+
text = self._construct_prompts(text)
|
| 267 |
+
|
| 268 |
+
inputs = self.tokenizer(
|
| 269 |
+
text,
|
| 270 |
+
return_tensors=return_tensors,
|
| 271 |
+
padding=padding,
|
| 272 |
+
max_length=max_length,
|
| 273 |
+
truncation=truncation,
|
| 274 |
+
return_token_type_ids=return_token_type_ids,
|
| 275 |
+
)
|
| 276 |
+
|
| 277 |
+
return_data = {**inputs, "pixel_values": pixel_values}
|
| 278 |
+
|
| 279 |
+
if return_token_type_ids:
|
| 280 |
+
labels = inputs["input_ids"].masked_fill(inputs["token_type_ids"] == 0, -100)
|
| 281 |
+
return_data.update({"labels": labels})
|
| 282 |
+
return BatchFeature(data=return_data)
|
| 283 |
+
|
| 284 |
+
# Copied from transformers.models.clip.processing_clip.CLIPProcessor.batch_decode with CLIP->Florence2
|
| 285 |
+
def batch_decode(self, *args, **kwargs):
|
| 286 |
+
"""
|
| 287 |
+
This method forwards all its arguments to BartTokenizerFast's [`~PreTrainedTokenizer.batch_decode`]. Please
|
| 288 |
+
refer to the docstring of this method for more information.
|
| 289 |
+
"""
|
| 290 |
+
return self.tokenizer.batch_decode(*args, **kwargs)
|
| 291 |
+
|
| 292 |
+
# Copied from transformers.models.clip.processing_clip.CLIPProcessor.decode with CLIP->Florence2
|
| 293 |
+
def decode(self, *args, **kwargs):
|
| 294 |
+
"""
|
| 295 |
+
This method forwards all its arguments to BartTokenizerFast's [`~PreTrainedTokenizer.decode`]. Please refer to
|
| 296 |
+
the docstring of this method for more information.
|
| 297 |
+
"""
|
| 298 |
+
return self.tokenizer.decode(*args, **kwargs)
|
| 299 |
+
|
| 300 |
+
@property
|
| 301 |
+
# Copied from transformers.models.clip.processing_clip.CLIPProcessor.model_input_names with CLIP->Florence2
|
| 302 |
+
def model_input_names(self):
|
| 303 |
+
tokenizer_input_names = self.tokenizer.model_input_names
|
| 304 |
+
image_processor_input_names = self.image_processor.model_input_names
|
| 305 |
+
return list(dict.fromkeys(tokenizer_input_names + image_processor_input_names))
|
| 306 |
+
|
| 307 |
+
def post_process_generation(self, text, task, image_size):
|
| 308 |
+
"""
|
| 309 |
+
Post-process the output of the model to each of the task outputs.
|
| 310 |
+
|
| 311 |
+
Args:
|
| 312 |
+
text (`str`): The text to post-process.
|
| 313 |
+
task (`str`): The task to post-process the text for.
|
| 314 |
+
image_size (`Tuple[int, int]`): The size of the image. height x width.
|
| 315 |
+
"""
|
| 316 |
+
|
| 317 |
+
task_answer_post_processing_type = self.tasks_answer_post_processing_type.get(task, 'pure_text')
|
| 318 |
+
task_answer = self.post_processor(
|
| 319 |
+
text=text,
|
| 320 |
+
image_size=image_size,
|
| 321 |
+
parse_tasks=task_answer_post_processing_type,
|
| 322 |
+
)[task_answer_post_processing_type]
|
| 323 |
+
|
| 324 |
+
if task_answer_post_processing_type == 'pure_text':
|
| 325 |
+
final_answer = task_answer
|
| 326 |
+
# remove the special tokens
|
| 327 |
+
final_answer = final_answer.replace('<s>', '').replace('</s>', '')
|
| 328 |
+
elif task_answer_post_processing_type in ['od', 'description_with_bboxes', 'bboxes']:
|
| 329 |
+
od_instances = task_answer
|
| 330 |
+
bboxes_od = [_od_instance['bbox'] for _od_instance in od_instances]
|
| 331 |
+
labels_od = [str(_od_instance['cat_name']) for _od_instance in od_instances]
|
| 332 |
+
final_answer = {'bboxes': bboxes_od, 'labels': labels_od}
|
| 333 |
+
elif task_answer_post_processing_type in ['ocr']:
|
| 334 |
+
bboxes = [_od_instance['quad_box'] for _od_instance in task_answer]
|
| 335 |
+
labels = [str(_od_instance['text']) for _od_instance in task_answer]
|
| 336 |
+
final_answer = {'quad_boxes': bboxes, 'labels': labels}
|
| 337 |
+
elif task_answer_post_processing_type in ['phrase_grounding']:
|
| 338 |
+
bboxes = []
|
| 339 |
+
labels = []
|
| 340 |
+
for _grounded_phrase in task_answer:
|
| 341 |
+
for _bbox in _grounded_phrase['bbox']:
|
| 342 |
+
bboxes.append(_bbox)
|
| 343 |
+
labels.append(_grounded_phrase['cat_name'])
|
| 344 |
+
final_answer = {'bboxes': bboxes, 'labels': labels}
|
| 345 |
+
elif task_answer_post_processing_type in ['description_with_polygons', 'polygons']:
|
| 346 |
+
labels = []
|
| 347 |
+
polygons = []
|
| 348 |
+
for result in task_answer:
|
| 349 |
+
label = result['cat_name']
|
| 350 |
+
_polygons = result['polygons']
|
| 351 |
+
labels.append(label)
|
| 352 |
+
polygons.append(_polygons)
|
| 353 |
+
final_answer = {'polygons': polygons, 'labels': labels}
|
| 354 |
+
elif task_answer_post_processing_type in ['description_with_bboxes_or_polygons']:
|
| 355 |
+
bboxes = []
|
| 356 |
+
bboxes_labels = []
|
| 357 |
+
polygons = []
|
| 358 |
+
polygons_labels = []
|
| 359 |
+
for result in task_answer:
|
| 360 |
+
label = result['cat_name']
|
| 361 |
+
if 'polygons' in result:
|
| 362 |
+
_polygons = result['polygons']
|
| 363 |
+
polygons.append(_polygons)
|
| 364 |
+
polygons_labels.append(label)
|
| 365 |
+
else:
|
| 366 |
+
_bbox = result['bbox']
|
| 367 |
+
bboxes.append(_bbox)
|
| 368 |
+
bboxes_labels.append(label)
|
| 369 |
+
final_answer = {'bboxes': bboxes, 'bboxes_labels': bboxes_labels, 'polygons': polygons, 'polygons_labels': polygons_labels}
|
| 370 |
+
else:
|
| 371 |
+
raise ValueError('Unknown task answer post processing type: {}'.format(task_answer_post_processing_type))
|
| 372 |
+
|
| 373 |
+
final_answer = {
|
| 374 |
+
task: final_answer}
|
| 375 |
+
return final_answer
|
| 376 |
+
|
| 377 |
+
class BoxQuantizer(object):
|
| 378 |
+
def __init__(self, mode, bins):
|
| 379 |
+
self.mode = mode
|
| 380 |
+
self.bins = bins
|
| 381 |
+
|
| 382 |
+
def quantize(self, boxes: torch.Tensor, size):
|
| 383 |
+
bins_w, bins_h = self.bins # Quantization bins.
|
| 384 |
+
size_w, size_h = size # Original image size.
|
| 385 |
+
size_per_bin_w = size_w / bins_w
|
| 386 |
+
size_per_bin_h = size_h / bins_h
|
| 387 |
+
xmin, ymin, xmax, ymax = boxes.split(1, dim=-1) # Shape: 4 * [N, 1].
|
| 388 |
+
|
| 389 |
+
if self.mode == 'floor':
|
| 390 |
+
quantized_xmin = (
|
| 391 |
+
xmin / size_per_bin_w).floor().clamp(0, bins_w - 1)
|
| 392 |
+
quantized_ymin = (
|
| 393 |
+
ymin / size_per_bin_h).floor().clamp(0, bins_h - 1)
|
| 394 |
+
quantized_xmax = (
|
| 395 |
+
xmax / size_per_bin_w).floor().clamp(0, bins_w - 1)
|
| 396 |
+
quantized_ymax = (
|
| 397 |
+
ymax / size_per_bin_h).floor().clamp(0, bins_h - 1)
|
| 398 |
+
|
| 399 |
+
elif self.mode == 'round':
|
| 400 |
+
raise NotImplementedError()
|
| 401 |
+
|
| 402 |
+
else:
|
| 403 |
+
raise ValueError('Incorrect quantization type.')
|
| 404 |
+
|
| 405 |
+
quantized_boxes = torch.cat(
|
| 406 |
+
(quantized_xmin, quantized_ymin, quantized_xmax, quantized_ymax), dim=-1
|
| 407 |
+
).int()
|
| 408 |
+
|
| 409 |
+
return quantized_boxes
|
| 410 |
+
|
| 411 |
+
def dequantize(self, boxes: torch.Tensor, size):
|
| 412 |
+
bins_w, bins_h = self.bins # Quantization bins.
|
| 413 |
+
size_w, size_h = size # Original image size.
|
| 414 |
+
size_per_bin_w = size_w / bins_w
|
| 415 |
+
size_per_bin_h = size_h / bins_h
|
| 416 |
+
xmin, ymin, xmax, ymax = boxes.split(1, dim=-1) # Shape: 4 * [N, 1].
|
| 417 |
+
|
| 418 |
+
if self.mode == 'floor':
|
| 419 |
+
# Add 0.5 to use the center position of the bin as the coordinate.
|
| 420 |
+
dequantized_xmin = (xmin + 0.5) * size_per_bin_w
|
| 421 |
+
dequantized_ymin = (ymin + 0.5) * size_per_bin_h
|
| 422 |
+
dequantized_xmax = (xmax + 0.5) * size_per_bin_w
|
| 423 |
+
dequantized_ymax = (ymax + 0.5) * size_per_bin_h
|
| 424 |
+
|
| 425 |
+
elif self.mode == 'round':
|
| 426 |
+
raise NotImplementedError()
|
| 427 |
+
|
| 428 |
+
else:
|
| 429 |
+
raise ValueError('Incorrect quantization type.')
|
| 430 |
+
|
| 431 |
+
dequantized_boxes = torch.cat(
|
| 432 |
+
(dequantized_xmin, dequantized_ymin,
|
| 433 |
+
dequantized_xmax, dequantized_ymax), dim=-1
|
| 434 |
+
)
|
| 435 |
+
|
| 436 |
+
return dequantized_boxes
|
| 437 |
+
|
| 438 |
+
|
| 439 |
+
class CoordinatesQuantizer(object):
|
| 440 |
+
"""
|
| 441 |
+
Quantize coornidates (Nx2)
|
| 442 |
+
"""
|
| 443 |
+
|
| 444 |
+
def __init__(self, mode, bins):
|
| 445 |
+
self.mode = mode
|
| 446 |
+
self.bins = bins
|
| 447 |
+
|
| 448 |
+
def quantize(self, coordinates: torch.Tensor, size):
|
| 449 |
+
bins_w, bins_h = self.bins # Quantization bins.
|
| 450 |
+
size_w, size_h = size # Original image size.
|
| 451 |
+
size_per_bin_w = size_w / bins_w
|
| 452 |
+
size_per_bin_h = size_h / bins_h
|
| 453 |
+
assert coordinates.shape[-1] == 2, 'coordinates should be shape (N, 2)'
|
| 454 |
+
x, y = coordinates.split(1, dim=-1) # Shape: 4 * [N, 1].
|
| 455 |
+
|
| 456 |
+
if self.mode == 'floor':
|
| 457 |
+
quantized_x = (x / size_per_bin_w).floor().clamp(0, bins_w - 1)
|
| 458 |
+
quantized_y = (y / size_per_bin_h).floor().clamp(0, bins_h - 1)
|
| 459 |
+
|
| 460 |
+
elif self.mode == 'round':
|
| 461 |
+
raise NotImplementedError()
|
| 462 |
+
|
| 463 |
+
else:
|
| 464 |
+
raise ValueError('Incorrect quantization type.')
|
| 465 |
+
|
| 466 |
+
quantized_coordinates = torch.cat(
|
| 467 |
+
(quantized_x, quantized_y), dim=-1
|
| 468 |
+
).int()
|
| 469 |
+
|
| 470 |
+
return quantized_coordinates
|
| 471 |
+
|
| 472 |
+
def dequantize(self, coordinates: torch.Tensor, size):
|
| 473 |
+
bins_w, bins_h = self.bins # Quantization bins.
|
| 474 |
+
size_w, size_h = size # Original image size.
|
| 475 |
+
size_per_bin_w = size_w / bins_w
|
| 476 |
+
size_per_bin_h = size_h / bins_h
|
| 477 |
+
assert coordinates.shape[-1] == 2, 'coordinates should be shape (N, 2)'
|
| 478 |
+
x, y = coordinates.split(1, dim=-1) # Shape: 4 * [N, 1].
|
| 479 |
+
|
| 480 |
+
if self.mode == 'floor':
|
| 481 |
+
# Add 0.5 to use the center position of the bin as the coordinate.
|
| 482 |
+
dequantized_x = (x + 0.5) * size_per_bin_w
|
| 483 |
+
dequantized_y = (y + 0.5) * size_per_bin_h
|
| 484 |
+
|
| 485 |
+
elif self.mode == 'round':
|
| 486 |
+
raise NotImplementedError()
|
| 487 |
+
|
| 488 |
+
else:
|
| 489 |
+
raise ValueError('Incorrect quantization type.')
|
| 490 |
+
|
| 491 |
+
dequantized_coordinates = torch.cat(
|
| 492 |
+
(dequantized_x, dequantized_y), dim=-1
|
| 493 |
+
)
|
| 494 |
+
|
| 495 |
+
return dequantized_coordinates
|
| 496 |
+
|
| 497 |
+
|
| 498 |
+
class Florence2PostProcesser(object):
|
| 499 |
+
"""
|
| 500 |
+
Florence-2 post process for converting text prediction to various tasks results.
|
| 501 |
+
|
| 502 |
+
Args:
|
| 503 |
+
config: A dict of configs.
|
| 504 |
+
tokenizer: A tokenizer for decoding text to spans.
|
| 505 |
+
sample config:
|
| 506 |
+
UNIFIED_POST_PROCESS:
|
| 507 |
+
# commom configs
|
| 508 |
+
NUM_BBOX_HEIGHT_BINS: 1000
|
| 509 |
+
NUM_BBOX_WIDTH_BINS: 1000
|
| 510 |
+
COORDINATES_HEIGHT_BINS: 1000
|
| 511 |
+
COORDINATES_WIDTH_BINS: 1000
|
| 512 |
+
# task specific configs, override the common configs
|
| 513 |
+
PRASE_TASKS:
|
| 514 |
+
- TASK_NAME: 'video_dense_caption'
|
| 515 |
+
PATTERN: 'r<time_(\d+)><time_(\d+)>([a-zA-Z0-9 ]+)'
|
| 516 |
+
SCORE_MODE: 'avg_cat_name_scores'
|
| 517 |
+
NUM_BINS: 100
|
| 518 |
+
- TASK_NAME: 'od'
|
| 519 |
+
PATTERN: 'r<loc_(\d+)><loc_(\d+)><loc_(\d+)><loc_(\d+)>([a-zA-Z0-9 ]+)'
|
| 520 |
+
SCORE_MODE: 'avg_cat_name_scores'
|
| 521 |
+
|
| 522 |
+
Returns:
|
| 523 |
+
parsed_dict (dict): A dict of parsed results.
|
| 524 |
+
"""
|
| 525 |
+
def __init__(
|
| 526 |
+
self,
|
| 527 |
+
tokenizer=None
|
| 528 |
+
):
|
| 529 |
+
parse_tasks = []
|
| 530 |
+
parse_task_configs = {}
|
| 531 |
+
config = self._create_default_config()
|
| 532 |
+
for task in config['PARSE_TASKS']:
|
| 533 |
+
parse_tasks.append(task['TASK_NAME'])
|
| 534 |
+
parse_task_configs[task['TASK_NAME']] = task
|
| 535 |
+
|
| 536 |
+
self.config = config
|
| 537 |
+
self.parse_tasks = parse_tasks
|
| 538 |
+
self.parse_tasks_configs = parse_task_configs
|
| 539 |
+
|
| 540 |
+
self.tokenizer = tokenizer
|
| 541 |
+
if self.tokenizer is not None:
|
| 542 |
+
self.all_special_tokens = set(self.tokenizer.all_special_tokens)
|
| 543 |
+
|
| 544 |
+
self.init_quantizers()
|
| 545 |
+
self.black_list_of_phrase_grounding = self._create_black_list_of_phrase_grounding()
|
| 546 |
+
|
| 547 |
+
def _create_black_list_of_phrase_grounding(self):
|
| 548 |
+
black_list = {}
|
| 549 |
+
|
| 550 |
+
if 'phrase_grounding' in self.parse_tasks and self.parse_tasks_configs['phrase_grounding']['FILTER_BY_BLACK_LIST']:
|
| 551 |
+
black_list = set(
|
| 552 |
+
['it', 'I', 'me', 'mine',
|
| 553 |
+
'you', 'your', 'yours',
|
| 554 |
+
'he', 'him', 'his',
|
| 555 |
+
'she', 'her', 'hers',
|
| 556 |
+
'they', 'them', 'their', 'theirs',
|
| 557 |
+
'one', 'oneself',
|
| 558 |
+
'we', 'us', 'our', 'ours',
|
| 559 |
+
'you', 'your', 'yours',
|
| 560 |
+
'they', 'them', 'their', 'theirs',
|
| 561 |
+
'mine', 'yours', 'his', 'hers', 'its',
|
| 562 |
+
'ours', 'yours', 'theirs',
|
| 563 |
+
'myself', 'yourself', 'himself', 'herself', 'itself',
|
| 564 |
+
'ourselves', 'yourselves', 'themselves',
|
| 565 |
+
'this', 'that',
|
| 566 |
+
'these', 'those',
|
| 567 |
+
'who', 'whom', 'whose', 'which', 'what',
|
| 568 |
+
'who', 'whom', 'whose', 'which', 'that',
|
| 569 |
+
'all', 'another', 'any', 'anybody', 'anyone', 'anything',
|
| 570 |
+
'each', 'everybody', 'everyone', 'everything',
|
| 571 |
+
'few', 'many', 'nobody', 'none', 'one', 'several',
|
| 572 |
+
'some', 'somebody', 'someone', 'something',
|
| 573 |
+
'each other', 'one another',
|
| 574 |
+
'myself', 'yourself', 'himself', 'herself', 'itself',
|
| 575 |
+
'ourselves', 'yourselves', 'themselves',
|
| 576 |
+
'the image', 'image', 'images', 'the', 'a', 'an', 'a group',
|
| 577 |
+
'other objects', 'lots', 'a set',
|
| 578 |
+
]
|
| 579 |
+
)
|
| 580 |
+
|
| 581 |
+
return black_list
|
| 582 |
+
|
| 583 |
+
def _create_default_config(self):
|
| 584 |
+
config = {
|
| 585 |
+
'NUM_BBOX_HEIGHT_BINS': 1000,
|
| 586 |
+
'NUM_BBOX_WIDTH_BINS': 1000,
|
| 587 |
+
'BOX_QUANTIZATION_MODE': 'floor',
|
| 588 |
+
'COORDINATES_HEIGHT_BINS': 1000,
|
| 589 |
+
'COORDINATES_WIDTH_BINS': 1000,
|
| 590 |
+
'COORDINATES_QUANTIZATION_MODE': 'floor',
|
| 591 |
+
'PARSE_TASKS': [
|
| 592 |
+
{
|
| 593 |
+
'TASK_NAME': 'od',
|
| 594 |
+
'PATTERN': r'([a-zA-Z0-9 ]+)<loc_(\\d+)><loc_(\\d+)><loc_(\\d+)><loc_(\\d+)>'
|
| 595 |
+
},
|
| 596 |
+
{
|
| 597 |
+
'TASK_NAME': 'ocr',
|
| 598 |
+
'PATTERN': r'(.+?)<loc_(\d+)><loc_(\d+)><loc_(\d+)><loc_(\d+)><loc_(\d+)><loc_(\d+)><loc_(\d+)><loc_(\d+)>',
|
| 599 |
+
'AREA_THRESHOLD': 0.00
|
| 600 |
+
},
|
| 601 |
+
{
|
| 602 |
+
'TASK_NAME': 'phrase_grounding',
|
| 603 |
+
'FILTER_BY_BLACK_LIST': True
|
| 604 |
+
},
|
| 605 |
+
{
|
| 606 |
+
'TASK_NAME': 'pure_text',
|
| 607 |
+
},
|
| 608 |
+
{
|
| 609 |
+
'TASK_NAME': 'description_with_bboxes',
|
| 610 |
+
},
|
| 611 |
+
{
|
| 612 |
+
'TASK_NAME': 'description_with_polygons',
|
| 613 |
+
},
|
| 614 |
+
{
|
| 615 |
+
'TASK_NAME': 'polygons',
|
| 616 |
+
},
|
| 617 |
+
{
|
| 618 |
+
'TASK_NAME': 'bboxes',
|
| 619 |
+
},
|
| 620 |
+
{
|
| 621 |
+
'TASK_NAME': 'description_with_bboxes_or_polygons',
|
| 622 |
+
}
|
| 623 |
+
]
|
| 624 |
+
}
|
| 625 |
+
|
| 626 |
+
return config
|
| 627 |
+
|
| 628 |
+
def init_quantizers(self):
|
| 629 |
+
# we have box_quantizer (od, grounding) and coordinates_quantizer (ocr, referring_segmentation)
|
| 630 |
+
num_bbox_height_bins = self.config.get('NUM_BBOX_HEIGHT_BINS', 1000)
|
| 631 |
+
num_bbox_width_bins = self.config.get('NUM_BBOX_WIDTH_BINS', 1000)
|
| 632 |
+
box_quantization_mode = self.config.get('BOX_QUANTIZATION_MODE', 'floor')
|
| 633 |
+
self.box_quantizer = BoxQuantizer(
|
| 634 |
+
box_quantization_mode,
|
| 635 |
+
(num_bbox_width_bins, num_bbox_height_bins),
|
| 636 |
+
)
|
| 637 |
+
|
| 638 |
+
num_bbox_height_bins = self.config['COORDINATES_HEIGHT_BINS'] if 'COORDINATES_HEIGHT_BINS' in self.config else self.config.get('NUM_BBOX_HEIGHT_BINS', 1000)
|
| 639 |
+
num_bbox_width_bins = self.config['COORDINATES_WIDTH_BINS'] if 'COORDINATES_WIDTH_BINS' in self.config else self.config.get('NUM_BBOX_WIDTH_BINS', 1000)
|
| 640 |
+
box_quantization_mode = self.config.get('COORDINATES_QUANTIZATION_MODE') if 'COORDINATES_QUANTIZATION_MODE' in self.config else self.config.get('BOX_QUANTIZATION_MODE', 'floor')
|
| 641 |
+
self.coordinates_quantizer = CoordinatesQuantizer(
|
| 642 |
+
box_quantization_mode,
|
| 643 |
+
(num_bbox_width_bins, num_bbox_height_bins),
|
| 644 |
+
)
|
| 645 |
+
|
| 646 |
+
def decode_with_spans(self, tokenizer, token_ids):
|
| 647 |
+
filtered_tokens = tokenizer.convert_ids_to_tokens(
|
| 648 |
+
token_ids, skip_special_tokens=False)
|
| 649 |
+
assert len(filtered_tokens) == len(token_ids)
|
| 650 |
+
|
| 651 |
+
# To avoid mixing byte-level and unicode for byte-level BPT
|
| 652 |
+
# we need to build string separately for added tokens and byte-level tokens
|
| 653 |
+
# cf. https://github.com/huggingface/transformers/issues/1133
|
| 654 |
+
sub_texts = []
|
| 655 |
+
for token in filtered_tokens:
|
| 656 |
+
if token in self.all_special_tokens:
|
| 657 |
+
sub_texts.append(token)
|
| 658 |
+
else:
|
| 659 |
+
if isinstance(tokenizer, (BartTokenizer, BartTokenizerFast)):
|
| 660 |
+
sub_text = tokenizer.convert_tokens_to_string([token])
|
| 661 |
+
elif isinstance(tokenizer, (T5Tokenizer, T5TokenizerFast)):
|
| 662 |
+
# Ref: https://github.com/google/sentencepiece#whitespace-is-treated-as-a-basic-symbol
|
| 663 |
+
# Note: Do not strip sub_text as it may have functional whitespace
|
| 664 |
+
sub_text = token.replace('▁', ' ')
|
| 665 |
+
else:
|
| 666 |
+
raise ValueError(f'type {type(tokenizer)} not supported')
|
| 667 |
+
sub_texts.append(sub_text)
|
| 668 |
+
|
| 669 |
+
text = ''
|
| 670 |
+
spans = []
|
| 671 |
+
for sub_text in sub_texts:
|
| 672 |
+
span = (len(text), len(text) + len(sub_text)) # [start index, end index).
|
| 673 |
+
text += sub_text
|
| 674 |
+
spans.append(span)
|
| 675 |
+
|
| 676 |
+
# Text format:
|
| 677 |
+
# 1. T5Tokenizer/T5TokenizerFast:
|
| 678 |
+
# "<loc_1><loc_2><loc_3><loc_4> transplanting dog<loc_1><loc_2><loc_3><loc_4> cat</s>"
|
| 679 |
+
# Equivalent to t5_tokenizer.decode(input_ids, skip_special_tokens=False, clean_up_tokenization_spaces=False, spaces_between_special_tokens=False)
|
| 680 |
+
# 2. BartTokenizer (need to double check):
|
| 681 |
+
# "<s><loc_1><loc_2><loc_3><loc_4>transplanting dog<loc_1><loc_2><loc_3><loc_4>cat</s>"
|
| 682 |
+
# Equivalent to bart_tokenizer.decode(input_ids, skip_special_tokens=False, clean_up_tokenization_spaces=False, spaces_between_special_tokens=False)
|
| 683 |
+
return text, spans
|
| 684 |
+
|
| 685 |
+
def parse_od_from_text_and_spans(
|
| 686 |
+
self,
|
| 687 |
+
text,
|
| 688 |
+
pattern,
|
| 689 |
+
image_size,
|
| 690 |
+
phrase_centric=False
|
| 691 |
+
):
|
| 692 |
+
parsed = list(re.finditer(pattern, text))
|
| 693 |
+
|
| 694 |
+
instances = []
|
| 695 |
+
for i in range(len(parsed)):
|
| 696 |
+
# Prepare instance.
|
| 697 |
+
instance = {}
|
| 698 |
+
|
| 699 |
+
if phrase_centric:
|
| 700 |
+
bbox_bins = [int(parsed[i].group(j)) for j in range(2, 6)]
|
| 701 |
+
else:
|
| 702 |
+
bbox_bins = [int(parsed[i].group(j)) for j in range(1, 5)]
|
| 703 |
+
instance['bbox'] = self.box_quantizer.dequantize(
|
| 704 |
+
boxes=torch.tensor(bbox_bins),
|
| 705 |
+
size=image_size
|
| 706 |
+
).tolist()
|
| 707 |
+
|
| 708 |
+
if phrase_centric:
|
| 709 |
+
instance['cat_name'] = parsed[i].group(1).lower().strip()
|
| 710 |
+
else:
|
| 711 |
+
instance['cat_name'] = parsed[i].group(5).lower().strip()
|
| 712 |
+
instances.append(instance)
|
| 713 |
+
|
| 714 |
+
return instances
|
| 715 |
+
|
| 716 |
+
def parse_ocr_from_text_and_spans(self,
|
| 717 |
+
text,
|
| 718 |
+
pattern,
|
| 719 |
+
image_size,
|
| 720 |
+
area_threshold=-1.0,
|
| 721 |
+
):
|
| 722 |
+
bboxes = []
|
| 723 |
+
labels = []
|
| 724 |
+
text = text.replace('<s>', '')
|
| 725 |
+
# ocr with regions
|
| 726 |
+
parsed = re.findall(pattern, text)
|
| 727 |
+
instances = []
|
| 728 |
+
image_width, image_height = image_size
|
| 729 |
+
|
| 730 |
+
for ocr_line in parsed:
|
| 731 |
+
ocr_content = ocr_line[0]
|
| 732 |
+
quad_box = ocr_line[1:]
|
| 733 |
+
quad_box = [int(i) for i in quad_box]
|
| 734 |
+
quad_box = self.coordinates_quantizer.dequantize(
|
| 735 |
+
torch.tensor(np.array(quad_box).reshape(-1, 2)),
|
| 736 |
+
size=image_size
|
| 737 |
+
).reshape(-1).tolist()
|
| 738 |
+
|
| 739 |
+
if area_threshold > 0:
|
| 740 |
+
x_coords = [i for i in quad_box[0::2]]
|
| 741 |
+
y_coords = [i for i in quad_box[1::2]]
|
| 742 |
+
|
| 743 |
+
# apply the Shoelace formula
|
| 744 |
+
area = 0.5 * abs(sum(x_coords[i] * y_coords[i + 1] - x_coords[i + 1] * y_coords[i] for i in range(4 - 1)))
|
| 745 |
+
|
| 746 |
+
if area < (image_width * image_height) * area_threshold:
|
| 747 |
+
continue
|
| 748 |
+
|
| 749 |
+
bboxes.append(quad_box)
|
| 750 |
+
labels.append(ocr_content)
|
| 751 |
+
instances.append({
|
| 752 |
+
'quad_box': quad_box,
|
| 753 |
+
'text': ocr_content,
|
| 754 |
+
})
|
| 755 |
+
return instances
|
| 756 |
+
|
| 757 |
+
def parse_phrase_grounding_from_text_and_spans(self, text, pattern, image_size):
|
| 758 |
+
# ignore <s> </s> and <pad>
|
| 759 |
+
cur_span = 0
|
| 760 |
+
if text.startswith('<s>'):
|
| 761 |
+
cur_span += 3
|
| 762 |
+
|
| 763 |
+
text = text.replace('<s>', '')
|
| 764 |
+
text = text.replace('</s>', '')
|
| 765 |
+
text = text.replace('<pad>', '')
|
| 766 |
+
|
| 767 |
+
pattern = r"([^<]+(?:<loc_\d+>){4,})"
|
| 768 |
+
phrases = re.findall(pattern, text)
|
| 769 |
+
|
| 770 |
+
# pattern should be text pattern and od pattern
|
| 771 |
+
pattern = r'^\s*(.*?)(?=<od>|</od>|<box>|</box>|<bbox>|</bbox>|<loc_)'
|
| 772 |
+
box_pattern = r'<loc_(\d+)><loc_(\d+)><loc_(\d+)><loc_(\d+)>'
|
| 773 |
+
|
| 774 |
+
instances = []
|
| 775 |
+
for pharse_text in phrases:
|
| 776 |
+
phrase_text_strip = pharse_text.replace('<ground>', '', 1)
|
| 777 |
+
phrase_text_strip = pharse_text.replace('<obj>', '', 1)
|
| 778 |
+
|
| 779 |
+
if phrase_text_strip == '':
|
| 780 |
+
cur_span += len(pharse_text)
|
| 781 |
+
continue
|
| 782 |
+
|
| 783 |
+
# Prepare instance.
|
| 784 |
+
instance = {}
|
| 785 |
+
|
| 786 |
+
# parse phrase, get string
|
| 787 |
+
phrase = re.search(pattern, phrase_text_strip)
|
| 788 |
+
if phrase is None:
|
| 789 |
+
cur_span += len(pharse_text)
|
| 790 |
+
continue
|
| 791 |
+
|
| 792 |
+
# parse bboxes by box_pattern
|
| 793 |
+
bboxes_parsed = list(re.finditer(box_pattern, pharse_text))
|
| 794 |
+
if len(bboxes_parsed) == 0:
|
| 795 |
+
cur_span += len(pharse_text)
|
| 796 |
+
continue
|
| 797 |
+
|
| 798 |
+
phrase = phrase.group()
|
| 799 |
+
# remove leading and trailing spaces
|
| 800 |
+
phrase = phrase.strip()
|
| 801 |
+
|
| 802 |
+
if phrase in self.black_list_of_phrase_grounding:
|
| 803 |
+
cur_span += len(pharse_text)
|
| 804 |
+
continue
|
| 805 |
+
|
| 806 |
+
# a list of list
|
| 807 |
+
bbox_bins = [[int(_bboxes_parsed.group(j)) for j in range(1, 5)] for _bboxes_parsed in bboxes_parsed]
|
| 808 |
+
instance['bbox'] = self.box_quantizer.dequantize(
|
| 809 |
+
boxes=torch.tensor(bbox_bins),
|
| 810 |
+
size=image_size
|
| 811 |
+
).tolist()
|
| 812 |
+
|
| 813 |
+
# exclude non-ascii characters
|
| 814 |
+
phrase = phrase.encode('ascii',errors='ignore').decode('ascii')
|
| 815 |
+
instance['cat_name'] = phrase
|
| 816 |
+
|
| 817 |
+
instances.append(instance)
|
| 818 |
+
|
| 819 |
+
return instances
|
| 820 |
+
|
| 821 |
+
def parse_description_with_bboxes_from_text_and_spans(self, text, pattern, image_size, allow_empty_phrase=False):
|
| 822 |
+
# temporary parse solution, split by '.'
|
| 823 |
+
# ignore <s> </s> and <pad>
|
| 824 |
+
|
| 825 |
+
text = text.replace('<s>', '')
|
| 826 |
+
text = text.replace('</s>', '')
|
| 827 |
+
text = text.replace('<pad>', '')
|
| 828 |
+
|
| 829 |
+
if allow_empty_phrase:
|
| 830 |
+
pattern = rf"(?:(?:<loc_\d+>){{4,}})"
|
| 831 |
+
else:
|
| 832 |
+
pattern = r"([^<]+(?:<loc_\d+>){4,})"
|
| 833 |
+
phrases = re.findall(pattern, text)
|
| 834 |
+
|
| 835 |
+
# pattern should be text pattern and od pattern
|
| 836 |
+
pattern = r'^\s*(.*?)(?=<od>|</od>|<box>|</box>|<bbox>|</bbox>|<loc_)'
|
| 837 |
+
box_pattern = r'<loc_(\d+)><loc_(\d+)><loc_(\d+)><loc_(\d+)>'
|
| 838 |
+
|
| 839 |
+
instances = []
|
| 840 |
+
for pharse_text in phrases:
|
| 841 |
+
phrase_text_strip = pharse_text.replace('<ground>', '', 1)
|
| 842 |
+
phrase_text_strip = pharse_text.replace('<obj>', '', 1)
|
| 843 |
+
|
| 844 |
+
if phrase_text_strip == '' and not allow_empty_phrase:
|
| 845 |
+
continue
|
| 846 |
+
|
| 847 |
+
# parse phrase, get string
|
| 848 |
+
phrase = re.search(pattern, phrase_text_strip)
|
| 849 |
+
if phrase is None:
|
| 850 |
+
continue
|
| 851 |
+
|
| 852 |
+
phrase = phrase.group()
|
| 853 |
+
# remove leading and trailing spaces
|
| 854 |
+
phrase = phrase.strip()
|
| 855 |
+
|
| 856 |
+
# parse bboxes by box_pattern
|
| 857 |
+
bboxes_parsed = list(re.finditer(box_pattern, pharse_text))
|
| 858 |
+
if len(bboxes_parsed) == 0:
|
| 859 |
+
continue
|
| 860 |
+
|
| 861 |
+
# a list of list
|
| 862 |
+
bbox_bins = [[int(_bboxes_parsed.group(j)) for j in range(1, 5)] for _bboxes_parsed in bboxes_parsed]
|
| 863 |
+
|
| 864 |
+
bboxes = self.box_quantizer.dequantize(
|
| 865 |
+
boxes=torch.tensor(bbox_bins),
|
| 866 |
+
size=image_size
|
| 867 |
+
).tolist()
|
| 868 |
+
|
| 869 |
+
phrase = phrase.encode('ascii',errors='ignore').decode('ascii')
|
| 870 |
+
for _bboxes in bboxes:
|
| 871 |
+
# Prepare instance.
|
| 872 |
+
instance = {}
|
| 873 |
+
instance['bbox'] = _bboxes
|
| 874 |
+
# exclude non-ascii characters
|
| 875 |
+
instance['cat_name'] = phrase
|
| 876 |
+
instances.append(instance)
|
| 877 |
+
|
| 878 |
+
return instances
|
| 879 |
+
|
| 880 |
+
def parse_description_with_polygons_from_text_and_spans(self, text, pattern, image_size,
|
| 881 |
+
allow_empty_phrase=False,
|
| 882 |
+
polygon_sep_token='<sep>',
|
| 883 |
+
polygon_start_token='<poly>',
|
| 884 |
+
polygon_end_token='</poly>',
|
| 885 |
+
with_box_at_start=False,
|
| 886 |
+
):
|
| 887 |
+
|
| 888 |
+
# ref_seg format: '<expression><x1><y1><x2><y2><><><sep><><><><>'
|
| 889 |
+
# ignore <s> </s> and <pad>
|
| 890 |
+
|
| 891 |
+
text = text.replace('<s>', '')
|
| 892 |
+
text = text.replace('</s>', '')
|
| 893 |
+
text = text.replace('<pad>', '')
|
| 894 |
+
|
| 895 |
+
if allow_empty_phrase:
|
| 896 |
+
pattern = rf"(?:(?:<loc_\d+>|{re.escape(polygon_sep_token)}|{re.escape(polygon_start_token)}|{re.escape(polygon_end_token)}){{4,}})"
|
| 897 |
+
else:
|
| 898 |
+
# [^<]+: This part matches one or more characters that are not the < symbol.
|
| 899 |
+
# The ^ inside the square brackets [] is a negation, meaning it matches anything except <.
|
| 900 |
+
#
|
| 901 |
+
pattern = rf"([^<]+(?:<loc_\d+>|{re.escape(polygon_sep_token)}|{re.escape(polygon_start_token)}|{re.escape(polygon_end_token)}){{4,}})"
|
| 902 |
+
phrases = re.findall(pattern, text)
|
| 903 |
+
|
| 904 |
+
phrase_string_pattern = r'^\s*(.*?)(?=<od>|</od>|<box>|</box>|<bbox>|</bbox>|<loc_|<poly>)'
|
| 905 |
+
box_pattern = rf'((?:<loc_\d+>)+)(?:{re.escape(polygon_sep_token)}|$)'
|
| 906 |
+
|
| 907 |
+
# one polygons instance is separated by polygon_start_token and polygon_end_token
|
| 908 |
+
polygons_instance_pattern = rf'{re.escape(polygon_start_token)}(.*?){re.escape(polygon_end_token)}'
|
| 909 |
+
|
| 910 |
+
instances = []
|
| 911 |
+
for phrase_text in phrases:
|
| 912 |
+
|
| 913 |
+
# exclude loc_\d+>
|
| 914 |
+
# need to get span if want to include category score
|
| 915 |
+
phrase_text_strip = re.sub(r'^loc_\d+>', '', phrase_text, count=1)
|
| 916 |
+
|
| 917 |
+
# phrase = phrase.replace('<poly>', '')
|
| 918 |
+
# phrase = phrase.replace('poly>', '')
|
| 919 |
+
|
| 920 |
+
if phrase_text_strip == '' and not allow_empty_phrase:
|
| 921 |
+
continue
|
| 922 |
+
|
| 923 |
+
|
| 924 |
+
# parse phrase, get string
|
| 925 |
+
phrase = re.search(phrase_string_pattern, phrase_text_strip)
|
| 926 |
+
if phrase is None:
|
| 927 |
+
continue
|
| 928 |
+
phrase = phrase.group()
|
| 929 |
+
# remove leading and trailing spaces
|
| 930 |
+
phrase = phrase.strip()
|
| 931 |
+
|
| 932 |
+
# parse bboxes by box_pattern
|
| 933 |
+
|
| 934 |
+
# split by polygon_start_token and polygon_end_token first using polygons_instance_pattern
|
| 935 |
+
if polygon_start_token in phrase_text and polygon_end_token in phrase_text:
|
| 936 |
+
polygons_instances_parsed = list(re.finditer(polygons_instance_pattern, phrase_text))
|
| 937 |
+
else:
|
| 938 |
+
polygons_instances_parsed = [phrase_text]
|
| 939 |
+
|
| 940 |
+
for _polygons_instances_parsed in polygons_instances_parsed:
|
| 941 |
+
# Prepare instance.
|
| 942 |
+
instance = {}
|
| 943 |
+
|
| 944 |
+
# polygons_parsed= list(re.finditer(box_pattern, phrase_text))
|
| 945 |
+
if isinstance(_polygons_instances_parsed, str):
|
| 946 |
+
polygons_parsed= list(re.finditer(box_pattern, _polygons_instances_parsed))
|
| 947 |
+
else:
|
| 948 |
+
polygons_parsed= list(re.finditer(box_pattern, _polygons_instances_parsed.group(1)))
|
| 949 |
+
if len(polygons_parsed) == 0:
|
| 950 |
+
continue
|
| 951 |
+
|
| 952 |
+
# a list of list (polygon)
|
| 953 |
+
bbox = []
|
| 954 |
+
polygons = []
|
| 955 |
+
for _polygon_parsed in polygons_parsed:
|
| 956 |
+
# group 1: whole <loc_\d+>...</loc_\d+>
|
| 957 |
+
_polygon = _polygon_parsed.group(1)
|
| 958 |
+
# parse into list of int
|
| 959 |
+
_polygon = [int(_loc_parsed.group(1)) for _loc_parsed in re.finditer(r'<loc_(\d+)>', _polygon)]
|
| 960 |
+
if with_box_at_start and len(bbox) == 0:
|
| 961 |
+
if len(_polygon) > 4:
|
| 962 |
+
# no valid bbox prediction
|
| 963 |
+
bbox = _polygon[:4]
|
| 964 |
+
_polygon = _polygon[4:]
|
| 965 |
+
else:
|
| 966 |
+
bbox = [0, 0, 0, 0]
|
| 967 |
+
# abandon last element if is not paired
|
| 968 |
+
if len(_polygon) % 2 == 1:
|
| 969 |
+
_polygon = _polygon[:-1]
|
| 970 |
+
|
| 971 |
+
# reshape into (n, 2)
|
| 972 |
+
_polygon = self.coordinates_quantizer.dequantize(
|
| 973 |
+
torch.tensor(np.array(_polygon).reshape(-1, 2)),
|
| 974 |
+
size=image_size
|
| 975 |
+
).reshape(-1).tolist()
|
| 976 |
+
# reshape back
|
| 977 |
+
polygons.append(_polygon)
|
| 978 |
+
|
| 979 |
+
instance['cat_name'] = phrase
|
| 980 |
+
instance['polygons'] = polygons
|
| 981 |
+
if len(bbox) != 0:
|
| 982 |
+
instance['bbox'] = self.box_quantizer.dequantize(
|
| 983 |
+
boxes=torch.tensor([bbox]),
|
| 984 |
+
size=image_size
|
| 985 |
+
).tolist()[0]
|
| 986 |
+
|
| 987 |
+
instances.append(instance)
|
| 988 |
+
|
| 989 |
+
return instances
|
| 990 |
+
|
| 991 |
+
def __call__(
|
| 992 |
+
self,
|
| 993 |
+
text=None,
|
| 994 |
+
image_size=None,
|
| 995 |
+
parse_tasks=None,
|
| 996 |
+
):
|
| 997 |
+
"""
|
| 998 |
+
Args:
|
| 999 |
+
text: model outputs
|
| 1000 |
+
image_size: (width, height)
|
| 1001 |
+
parse_tasks: a list of tasks to parse, if None, parse all tasks.
|
| 1002 |
+
|
| 1003 |
+
"""
|
| 1004 |
+
if parse_tasks is not None:
|
| 1005 |
+
if isinstance(parse_tasks, str):
|
| 1006 |
+
parse_tasks = [parse_tasks]
|
| 1007 |
+
for _parse_task in parse_tasks:
|
| 1008 |
+
assert _parse_task in self.parse_tasks, f'parse task {_parse_task} not supported'
|
| 1009 |
+
|
| 1010 |
+
# sequence or text should be provided
|
| 1011 |
+
assert text is not None, 'text should be provided'
|
| 1012 |
+
|
| 1013 |
+
parsed_dict = {
|
| 1014 |
+
'text': text
|
| 1015 |
+
}
|
| 1016 |
+
|
| 1017 |
+
for task in self.parse_tasks:
|
| 1018 |
+
if parse_tasks is not None and task not in parse_tasks:
|
| 1019 |
+
continue
|
| 1020 |
+
|
| 1021 |
+
pattern = self.parse_tasks_configs[task].get('PATTERN', None)
|
| 1022 |
+
|
| 1023 |
+
if task == 'ocr':
|
| 1024 |
+
instances = self.parse_ocr_from_text_and_spans(
|
| 1025 |
+
text,
|
| 1026 |
+
pattern=pattern,
|
| 1027 |
+
image_size=image_size,
|
| 1028 |
+
area_threshold=self.parse_tasks_configs[task].get('AREA_THRESHOLD', 0.0),
|
| 1029 |
+
)
|
| 1030 |
+
parsed_dict['ocr'] = instances
|
| 1031 |
+
elif task == 'phrase_grounding':
|
| 1032 |
+
instances = self.parse_phrase_grounding_from_text_and_spans(
|
| 1033 |
+
text,
|
| 1034 |
+
pattern=pattern,
|
| 1035 |
+
image_size=image_size,
|
| 1036 |
+
)
|
| 1037 |
+
parsed_dict['phrase_grounding'] = instances
|
| 1038 |
+
elif task == 'pure_text':
|
| 1039 |
+
parsed_dict['pure_text'] = text
|
| 1040 |
+
elif task == 'description_with_bboxes':
|
| 1041 |
+
instances = self.parse_description_with_bboxes_from_text_and_spans(
|
| 1042 |
+
text,
|
| 1043 |
+
pattern=pattern,
|
| 1044 |
+
image_size=image_size,
|
| 1045 |
+
)
|
| 1046 |
+
parsed_dict['description_with_bboxes'] = instances
|
| 1047 |
+
elif task == 'description_with_polygons':
|
| 1048 |
+
instances = self.parse_description_with_polygons_from_text_and_spans(
|
| 1049 |
+
text,
|
| 1050 |
+
pattern=pattern,
|
| 1051 |
+
image_size=image_size,
|
| 1052 |
+
)
|
| 1053 |
+
parsed_dict['description_with_polygons'] = instances
|
| 1054 |
+
elif task == 'polygons':
|
| 1055 |
+
instances = self.parse_description_with_polygons_from_text_and_spans(
|
| 1056 |
+
text,
|
| 1057 |
+
pattern=pattern,
|
| 1058 |
+
image_size=image_size,
|
| 1059 |
+
allow_empty_phrase=True,
|
| 1060 |
+
)
|
| 1061 |
+
parsed_dict['polygons'] = instances
|
| 1062 |
+
elif task == 'bboxes':
|
| 1063 |
+
instances = self.parse_description_with_bboxes_from_text_and_spans(
|
| 1064 |
+
text,
|
| 1065 |
+
pattern=pattern,
|
| 1066 |
+
image_size=image_size,
|
| 1067 |
+
allow_empty_phrase=True,
|
| 1068 |
+
)
|
| 1069 |
+
parsed_dict['bboxes'] = instances
|
| 1070 |
+
elif task == 'description_with_bboxes_or_polygons':
|
| 1071 |
+
if '<poly>' in text:
|
| 1072 |
+
# only support either polygons or bboxes, not both at the same time
|
| 1073 |
+
instances = self.parse_description_with_polygons_from_text_and_spans(
|
| 1074 |
+
text,
|
| 1075 |
+
pattern=pattern,
|
| 1076 |
+
image_size=image_size,
|
| 1077 |
+
)
|
| 1078 |
+
else:
|
| 1079 |
+
instances = self.parse_description_with_bboxes_from_text_and_spans(
|
| 1080 |
+
text,
|
| 1081 |
+
pattern=pattern,
|
| 1082 |
+
image_size=image_size,
|
| 1083 |
+
)
|
| 1084 |
+
parsed_dict['description_with_bboxes_or_polygons'] = instances
|
| 1085 |
+
else:
|
| 1086 |
+
raise ValueError("task {} is not supported".format(task))
|
| 1087 |
+
|
| 1088 |
+
return parsed_dict
|
processor_config.json
ADDED
|
@@ -0,0 +1,6 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
+
{
|
| 2 |
+
"auto_map": {
|
| 3 |
+
"AutoProcessor": "processing_florence2.Florence2Processor"
|
| 4 |
+
},
|
| 5 |
+
"processor_class": "Florence2Processor"
|
| 6 |
+
}
|
special_tokens_map.json
ADDED
|
@@ -0,0 +1,30 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
+
{
|
| 2 |
+
"bos_token": {
|
| 3 |
+
"content": "<bos>",
|
| 4 |
+
"lstrip": false,
|
| 5 |
+
"normalized": false,
|
| 6 |
+
"rstrip": false,
|
| 7 |
+
"single_word": false
|
| 8 |
+
},
|
| 9 |
+
"eos_token": {
|
| 10 |
+
"content": "<eos>",
|
| 11 |
+
"lstrip": false,
|
| 12 |
+
"normalized": false,
|
| 13 |
+
"rstrip": false,
|
| 14 |
+
"single_word": false
|
| 15 |
+
},
|
| 16 |
+
"pad_token": {
|
| 17 |
+
"content": "<pad>",
|
| 18 |
+
"lstrip": false,
|
| 19 |
+
"normalized": false,
|
| 20 |
+
"rstrip": false,
|
| 21 |
+
"single_word": false
|
| 22 |
+
},
|
| 23 |
+
"unk_token": {
|
| 24 |
+
"content": "<unk>",
|
| 25 |
+
"lstrip": false,
|
| 26 |
+
"normalized": false,
|
| 27 |
+
"rstrip": false,
|
| 28 |
+
"single_word": false
|
| 29 |
+
}
|
| 30 |
+
}
|
tokenizer.json
ADDED
|
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
+
version https://git-lfs.github.com/spec/v1
|
| 2 |
+
oid sha256:3f289bc05132635a8bc7aca7aa21255efd5e18f3710f43e3cdb96bcd41be4922
|
| 3 |
+
size 17525357
|
tokenizer_config.json
ADDED
|
@@ -0,0 +1,2010 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
+
{
|
| 2 |
+
"add_bos_token": true,
|
| 3 |
+
"add_eos_token": false,
|
| 4 |
+
"added_tokens_decoder": {
|
| 5 |
+
"0": {
|
| 6 |
+
"content": "<pad>",
|
| 7 |
+
"lstrip": false,
|
| 8 |
+
"normalized": false,
|
| 9 |
+
"rstrip": false,
|
| 10 |
+
"single_word": false,
|
| 11 |
+
"special": true
|
| 12 |
+
},
|
| 13 |
+
"1": {
|
| 14 |
+
"content": "<eos>",
|
| 15 |
+
"lstrip": false,
|
| 16 |
+
"normalized": false,
|
| 17 |
+
"rstrip": false,
|
| 18 |
+
"single_word": false,
|
| 19 |
+
"special": true
|
| 20 |
+
},
|
| 21 |
+
"2": {
|
| 22 |
+
"content": "<bos>",
|
| 23 |
+
"lstrip": false,
|
| 24 |
+
"normalized": false,
|
| 25 |
+
"rstrip": false,
|
| 26 |
+
"single_word": false,
|
| 27 |
+
"special": true
|
| 28 |
+
},
|
| 29 |
+
"3": {
|
| 30 |
+
"content": "<unk>",
|
| 31 |
+
"lstrip": false,
|
| 32 |
+
"normalized": false,
|
| 33 |
+
"rstrip": false,
|
| 34 |
+
"single_word": false,
|
| 35 |
+
"special": true
|
| 36 |
+
},
|
| 37 |
+
"4": {
|
| 38 |
+
"content": "<mask>",
|
| 39 |
+
"lstrip": false,
|
| 40 |
+
"normalized": false,
|
| 41 |
+
"rstrip": false,
|
| 42 |
+
"single_word": false,
|
| 43 |
+
"special": false
|
| 44 |
+
},
|
| 45 |
+
"5": {
|
| 46 |
+
"content": "<2mass>",
|
| 47 |
+
"lstrip": false,
|
| 48 |
+
"normalized": false,
|
| 49 |
+
"rstrip": false,
|
| 50 |
+
"single_word": false,
|
| 51 |
+
"special": false
|
| 52 |
+
},
|
| 53 |
+
"6": {
|
| 54 |
+
"content": "[@BOS@]",
|
| 55 |
+
"lstrip": false,
|
| 56 |
+
"normalized": false,
|
| 57 |
+
"rstrip": false,
|
| 58 |
+
"single_word": false,
|
| 59 |
+
"special": false
|
| 60 |
+
},
|
| 61 |
+
"7": {
|
| 62 |
+
"content": "<unused0>",
|
| 63 |
+
"lstrip": false,
|
| 64 |
+
"normalized": false,
|
| 65 |
+
"rstrip": false,
|
| 66 |
+
"single_word": false,
|
| 67 |
+
"special": false
|
| 68 |
+
},
|
| 69 |
+
"8": {
|
| 70 |
+
"content": "<unused1>",
|
| 71 |
+
"lstrip": false,
|
| 72 |
+
"normalized": false,
|
| 73 |
+
"rstrip": false,
|
| 74 |
+
"single_word": false,
|
| 75 |
+
"special": false
|
| 76 |
+
},
|
| 77 |
+
"9": {
|
| 78 |
+
"content": "<unused2>",
|
| 79 |
+
"lstrip": false,
|
| 80 |
+
"normalized": false,
|
| 81 |
+
"rstrip": false,
|
| 82 |
+
"single_word": false,
|
| 83 |
+
"special": false
|
| 84 |
+
},
|
| 85 |
+
"10": {
|
| 86 |
+
"content": "<unused3>",
|
| 87 |
+
"lstrip": false,
|
| 88 |
+
"normalized": false,
|
| 89 |
+
"rstrip": false,
|
| 90 |
+
"single_word": false,
|
| 91 |
+
"special": false
|
| 92 |
+
},
|
| 93 |
+
"11": {
|
| 94 |
+
"content": "<unused4>",
|
| 95 |
+
"lstrip": false,
|
| 96 |
+
"normalized": false,
|
| 97 |
+
"rstrip": false,
|
| 98 |
+
"single_word": false,
|
| 99 |
+
"special": false
|
| 100 |
+
},
|
| 101 |
+
"12": {
|
| 102 |
+
"content": "<unused5>",
|
| 103 |
+
"lstrip": false,
|
| 104 |
+
"normalized": false,
|
| 105 |
+
"rstrip": false,
|
| 106 |
+
"single_word": false,
|
| 107 |
+
"special": false
|
| 108 |
+
},
|
| 109 |
+
"13": {
|
| 110 |
+
"content": "<unused6>",
|
| 111 |
+
"lstrip": false,
|
| 112 |
+
"normalized": false,
|
| 113 |
+
"rstrip": false,
|
| 114 |
+
"single_word": false,
|
| 115 |
+
"special": false
|
| 116 |
+
},
|
| 117 |
+
"14": {
|
| 118 |
+
"content": "<unused7>",
|
| 119 |
+
"lstrip": false,
|
| 120 |
+
"normalized": false,
|
| 121 |
+
"rstrip": false,
|
| 122 |
+
"single_word": false,
|
| 123 |
+
"special": false
|
| 124 |
+
},
|
| 125 |
+
"15": {
|
| 126 |
+
"content": "<unused8>",
|
| 127 |
+
"lstrip": false,
|
| 128 |
+
"normalized": false,
|
| 129 |
+
"rstrip": false,
|
| 130 |
+
"single_word": false,
|
| 131 |
+
"special": false
|
| 132 |
+
},
|
| 133 |
+
"16": {
|
| 134 |
+
"content": "<unused9>",
|
| 135 |
+
"lstrip": false,
|
| 136 |
+
"normalized": false,
|
| 137 |
+
"rstrip": false,
|
| 138 |
+
"single_word": false,
|
| 139 |
+
"special": false
|
| 140 |
+
},
|
| 141 |
+
"17": {
|
| 142 |
+
"content": "<unused10>",
|
| 143 |
+
"lstrip": false,
|
| 144 |
+
"normalized": false,
|
| 145 |
+
"rstrip": false,
|
| 146 |
+
"single_word": false,
|
| 147 |
+
"special": false
|
| 148 |
+
},
|
| 149 |
+
"18": {
|
| 150 |
+
"content": "<unused11>",
|
| 151 |
+
"lstrip": false,
|
| 152 |
+
"normalized": false,
|
| 153 |
+
"rstrip": false,
|
| 154 |
+
"single_word": false,
|
| 155 |
+
"special": false
|
| 156 |
+
},
|
| 157 |
+
"19": {
|
| 158 |
+
"content": "<unused12>",
|
| 159 |
+
"lstrip": false,
|
| 160 |
+
"normalized": false,
|
| 161 |
+
"rstrip": false,
|
| 162 |
+
"single_word": false,
|
| 163 |
+
"special": false
|
| 164 |
+
},
|
| 165 |
+
"20": {
|
| 166 |
+
"content": "<unused13>",
|
| 167 |
+
"lstrip": false,
|
| 168 |
+
"normalized": false,
|
| 169 |
+
"rstrip": false,
|
| 170 |
+
"single_word": false,
|
| 171 |
+
"special": false
|
| 172 |
+
},
|
| 173 |
+
"21": {
|
| 174 |
+
"content": "<unused14>",
|
| 175 |
+
"lstrip": false,
|
| 176 |
+
"normalized": false,
|
| 177 |
+
"rstrip": false,
|
| 178 |
+
"single_word": false,
|
| 179 |
+
"special": false
|
| 180 |
+
},
|
| 181 |
+
"22": {
|
| 182 |
+
"content": "<unused15>",
|
| 183 |
+
"lstrip": false,
|
| 184 |
+
"normalized": false,
|
| 185 |
+
"rstrip": false,
|
| 186 |
+
"single_word": false,
|
| 187 |
+
"special": false
|
| 188 |
+
},
|
| 189 |
+
"23": {
|
| 190 |
+
"content": "<unused16>",
|
| 191 |
+
"lstrip": false,
|
| 192 |
+
"normalized": false,
|
| 193 |
+
"rstrip": false,
|
| 194 |
+
"single_word": false,
|
| 195 |
+
"special": false
|
| 196 |
+
},
|
| 197 |
+
"24": {
|
| 198 |
+
"content": "<unused17>",
|
| 199 |
+
"lstrip": false,
|
| 200 |
+
"normalized": false,
|
| 201 |
+
"rstrip": false,
|
| 202 |
+
"single_word": false,
|
| 203 |
+
"special": false
|
| 204 |
+
},
|
| 205 |
+
"25": {
|
| 206 |
+
"content": "<unused18>",
|
| 207 |
+
"lstrip": false,
|
| 208 |
+
"normalized": false,
|
| 209 |
+
"rstrip": false,
|
| 210 |
+
"single_word": false,
|
| 211 |
+
"special": false
|
| 212 |
+
},
|
| 213 |
+
"26": {
|
| 214 |
+
"content": "<unused19>",
|
| 215 |
+
"lstrip": false,
|
| 216 |
+
"normalized": false,
|
| 217 |
+
"rstrip": false,
|
| 218 |
+
"single_word": false,
|
| 219 |
+
"special": false
|
| 220 |
+
},
|
| 221 |
+
"27": {
|
| 222 |
+
"content": "<unused20>",
|
| 223 |
+
"lstrip": false,
|
| 224 |
+
"normalized": false,
|
| 225 |
+
"rstrip": false,
|
| 226 |
+
"single_word": false,
|
| 227 |
+
"special": false
|
| 228 |
+
},
|
| 229 |
+
"28": {
|
| 230 |
+
"content": "<unused21>",
|
| 231 |
+
"lstrip": false,
|
| 232 |
+
"normalized": false,
|
| 233 |
+
"rstrip": false,
|
| 234 |
+
"single_word": false,
|
| 235 |
+
"special": false
|
| 236 |
+
},
|
| 237 |
+
"29": {
|
| 238 |
+
"content": "<unused22>",
|
| 239 |
+
"lstrip": false,
|
| 240 |
+
"normalized": false,
|
| 241 |
+
"rstrip": false,
|
| 242 |
+
"single_word": false,
|
| 243 |
+
"special": false
|
| 244 |
+
},
|
| 245 |
+
"30": {
|
| 246 |
+
"content": "<unused23>",
|
| 247 |
+
"lstrip": false,
|
| 248 |
+
"normalized": false,
|
| 249 |
+
"rstrip": false,
|
| 250 |
+
"single_word": false,
|
| 251 |
+
"special": false
|
| 252 |
+
},
|
| 253 |
+
"31": {
|
| 254 |
+
"content": "<unused24>",
|
| 255 |
+
"lstrip": false,
|
| 256 |
+
"normalized": false,
|
| 257 |
+
"rstrip": false,
|
| 258 |
+
"single_word": false,
|
| 259 |
+
"special": false
|
| 260 |
+
},
|
| 261 |
+
"32": {
|
| 262 |
+
"content": "<unused25>",
|
| 263 |
+
"lstrip": false,
|
| 264 |
+
"normalized": false,
|
| 265 |
+
"rstrip": false,
|
| 266 |
+
"single_word": false,
|
| 267 |
+
"special": false
|
| 268 |
+
},
|
| 269 |
+
"33": {
|
| 270 |
+
"content": "<unused26>",
|
| 271 |
+
"lstrip": false,
|
| 272 |
+
"normalized": false,
|
| 273 |
+
"rstrip": false,
|
| 274 |
+
"single_word": false,
|
| 275 |
+
"special": false
|
| 276 |
+
},
|
| 277 |
+
"34": {
|
| 278 |
+
"content": "<unused27>",
|
| 279 |
+
"lstrip": false,
|
| 280 |
+
"normalized": false,
|
| 281 |
+
"rstrip": false,
|
| 282 |
+
"single_word": false,
|
| 283 |
+
"special": false
|
| 284 |
+
},
|
| 285 |
+
"35": {
|
| 286 |
+
"content": "<unused28>",
|
| 287 |
+
"lstrip": false,
|
| 288 |
+
"normalized": false,
|
| 289 |
+
"rstrip": false,
|
| 290 |
+
"single_word": false,
|
| 291 |
+
"special": false
|
| 292 |
+
},
|
| 293 |
+
"36": {
|
| 294 |
+
"content": "<unused29>",
|
| 295 |
+
"lstrip": false,
|
| 296 |
+
"normalized": false,
|
| 297 |
+
"rstrip": false,
|
| 298 |
+
"single_word": false,
|
| 299 |
+
"special": false
|
| 300 |
+
},
|
| 301 |
+
"37": {
|
| 302 |
+
"content": "<unused30>",
|
| 303 |
+
"lstrip": false,
|
| 304 |
+
"normalized": false,
|
| 305 |
+
"rstrip": false,
|
| 306 |
+
"single_word": false,
|
| 307 |
+
"special": false
|
| 308 |
+
},
|
| 309 |
+
"38": {
|
| 310 |
+
"content": "<unused31>",
|
| 311 |
+
"lstrip": false,
|
| 312 |
+
"normalized": false,
|
| 313 |
+
"rstrip": false,
|
| 314 |
+
"single_word": false,
|
| 315 |
+
"special": false
|
| 316 |
+
},
|
| 317 |
+
"39": {
|
| 318 |
+
"content": "<unused32>",
|
| 319 |
+
"lstrip": false,
|
| 320 |
+
"normalized": false,
|
| 321 |
+
"rstrip": false,
|
| 322 |
+
"single_word": false,
|
| 323 |
+
"special": false
|
| 324 |
+
},
|
| 325 |
+
"40": {
|
| 326 |
+
"content": "<unused33>",
|
| 327 |
+
"lstrip": false,
|
| 328 |
+
"normalized": false,
|
| 329 |
+
"rstrip": false,
|
| 330 |
+
"single_word": false,
|
| 331 |
+
"special": false
|
| 332 |
+
},
|
| 333 |
+
"41": {
|
| 334 |
+
"content": "<unused34>",
|
| 335 |
+
"lstrip": false,
|
| 336 |
+
"normalized": false,
|
| 337 |
+
"rstrip": false,
|
| 338 |
+
"single_word": false,
|
| 339 |
+
"special": false
|
| 340 |
+
},
|
| 341 |
+
"42": {
|
| 342 |
+
"content": "<unused35>",
|
| 343 |
+
"lstrip": false,
|
| 344 |
+
"normalized": false,
|
| 345 |
+
"rstrip": false,
|
| 346 |
+
"single_word": false,
|
| 347 |
+
"special": false
|
| 348 |
+
},
|
| 349 |
+
"43": {
|
| 350 |
+
"content": "<unused36>",
|
| 351 |
+
"lstrip": false,
|
| 352 |
+
"normalized": false,
|
| 353 |
+
"rstrip": false,
|
| 354 |
+
"single_word": false,
|
| 355 |
+
"special": false
|
| 356 |
+
},
|
| 357 |
+
"44": {
|
| 358 |
+
"content": "<unused37>",
|
| 359 |
+
"lstrip": false,
|
| 360 |
+
"normalized": false,
|
| 361 |
+
"rstrip": false,
|
| 362 |
+
"single_word": false,
|
| 363 |
+
"special": false
|
| 364 |
+
},
|
| 365 |
+
"45": {
|
| 366 |
+
"content": "<unused38>",
|
| 367 |
+
"lstrip": false,
|
| 368 |
+
"normalized": false,
|
| 369 |
+
"rstrip": false,
|
| 370 |
+
"single_word": false,
|
| 371 |
+
"special": false
|
| 372 |
+
},
|
| 373 |
+
"46": {
|
| 374 |
+
"content": "<unused39>",
|
| 375 |
+
"lstrip": false,
|
| 376 |
+
"normalized": false,
|
| 377 |
+
"rstrip": false,
|
| 378 |
+
"single_word": false,
|
| 379 |
+
"special": false
|
| 380 |
+
},
|
| 381 |
+
"47": {
|
| 382 |
+
"content": "<unused40>",
|
| 383 |
+
"lstrip": false,
|
| 384 |
+
"normalized": false,
|
| 385 |
+
"rstrip": false,
|
| 386 |
+
"single_word": false,
|
| 387 |
+
"special": false
|
| 388 |
+
},
|
| 389 |
+
"48": {
|
| 390 |
+
"content": "<unused41>",
|
| 391 |
+
"lstrip": false,
|
| 392 |
+
"normalized": false,
|
| 393 |
+
"rstrip": false,
|
| 394 |
+
"single_word": false,
|
| 395 |
+
"special": false
|
| 396 |
+
},
|
| 397 |
+
"49": {
|
| 398 |
+
"content": "<unused42>",
|
| 399 |
+
"lstrip": false,
|
| 400 |
+
"normalized": false,
|
| 401 |
+
"rstrip": false,
|
| 402 |
+
"single_word": false,
|
| 403 |
+
"special": false
|
| 404 |
+
},
|
| 405 |
+
"50": {
|
| 406 |
+
"content": "<unused43>",
|
| 407 |
+
"lstrip": false,
|
| 408 |
+
"normalized": false,
|
| 409 |
+
"rstrip": false,
|
| 410 |
+
"single_word": false,
|
| 411 |
+
"special": false
|
| 412 |
+
},
|
| 413 |
+
"51": {
|
| 414 |
+
"content": "<unused44>",
|
| 415 |
+
"lstrip": false,
|
| 416 |
+
"normalized": false,
|
| 417 |
+
"rstrip": false,
|
| 418 |
+
"single_word": false,
|
| 419 |
+
"special": false
|
| 420 |
+
},
|
| 421 |
+
"52": {
|
| 422 |
+
"content": "<unused45>",
|
| 423 |
+
"lstrip": false,
|
| 424 |
+
"normalized": false,
|
| 425 |
+
"rstrip": false,
|
| 426 |
+
"single_word": false,
|
| 427 |
+
"special": false
|
| 428 |
+
},
|
| 429 |
+
"53": {
|
| 430 |
+
"content": "<unused46>",
|
| 431 |
+
"lstrip": false,
|
| 432 |
+
"normalized": false,
|
| 433 |
+
"rstrip": false,
|
| 434 |
+
"single_word": false,
|
| 435 |
+
"special": false
|
| 436 |
+
},
|
| 437 |
+
"54": {
|
| 438 |
+
"content": "<unused47>",
|
| 439 |
+
"lstrip": false,
|
| 440 |
+
"normalized": false,
|
| 441 |
+
"rstrip": false,
|
| 442 |
+
"single_word": false,
|
| 443 |
+
"special": false
|
| 444 |
+
},
|
| 445 |
+
"55": {
|
| 446 |
+
"content": "<unused48>",
|
| 447 |
+
"lstrip": false,
|
| 448 |
+
"normalized": false,
|
| 449 |
+
"rstrip": false,
|
| 450 |
+
"single_word": false,
|
| 451 |
+
"special": false
|
| 452 |
+
},
|
| 453 |
+
"56": {
|
| 454 |
+
"content": "<unused49>",
|
| 455 |
+
"lstrip": false,
|
| 456 |
+
"normalized": false,
|
| 457 |
+
"rstrip": false,
|
| 458 |
+
"single_word": false,
|
| 459 |
+
"special": false
|
| 460 |
+
},
|
| 461 |
+
"57": {
|
| 462 |
+
"content": "<unused50>",
|
| 463 |
+
"lstrip": false,
|
| 464 |
+
"normalized": false,
|
| 465 |
+
"rstrip": false,
|
| 466 |
+
"single_word": false,
|
| 467 |
+
"special": false
|
| 468 |
+
},
|
| 469 |
+
"58": {
|
| 470 |
+
"content": "<unused51>",
|
| 471 |
+
"lstrip": false,
|
| 472 |
+
"normalized": false,
|
| 473 |
+
"rstrip": false,
|
| 474 |
+
"single_word": false,
|
| 475 |
+
"special": false
|
| 476 |
+
},
|
| 477 |
+
"59": {
|
| 478 |
+
"content": "<unused52>",
|
| 479 |
+
"lstrip": false,
|
| 480 |
+
"normalized": false,
|
| 481 |
+
"rstrip": false,
|
| 482 |
+
"single_word": false,
|
| 483 |
+
"special": false
|
| 484 |
+
},
|
| 485 |
+
"60": {
|
| 486 |
+
"content": "<unused53>",
|
| 487 |
+
"lstrip": false,
|
| 488 |
+
"normalized": false,
|
| 489 |
+
"rstrip": false,
|
| 490 |
+
"single_word": false,
|
| 491 |
+
"special": false
|
| 492 |
+
},
|
| 493 |
+
"61": {
|
| 494 |
+
"content": "<unused54>",
|
| 495 |
+
"lstrip": false,
|
| 496 |
+
"normalized": false,
|
| 497 |
+
"rstrip": false,
|
| 498 |
+
"single_word": false,
|
| 499 |
+
"special": false
|
| 500 |
+
},
|
| 501 |
+
"62": {
|
| 502 |
+
"content": "<unused55>",
|
| 503 |
+
"lstrip": false,
|
| 504 |
+
"normalized": false,
|
| 505 |
+
"rstrip": false,
|
| 506 |
+
"single_word": false,
|
| 507 |
+
"special": false
|
| 508 |
+
},
|
| 509 |
+
"63": {
|
| 510 |
+
"content": "<unused56>",
|
| 511 |
+
"lstrip": false,
|
| 512 |
+
"normalized": false,
|
| 513 |
+
"rstrip": false,
|
| 514 |
+
"single_word": false,
|
| 515 |
+
"special": false
|
| 516 |
+
},
|
| 517 |
+
"64": {
|
| 518 |
+
"content": "<unused57>",
|
| 519 |
+
"lstrip": false,
|
| 520 |
+
"normalized": false,
|
| 521 |
+
"rstrip": false,
|
| 522 |
+
"single_word": false,
|
| 523 |
+
"special": false
|
| 524 |
+
},
|
| 525 |
+
"65": {
|
| 526 |
+
"content": "<unused58>",
|
| 527 |
+
"lstrip": false,
|
| 528 |
+
"normalized": false,
|
| 529 |
+
"rstrip": false,
|
| 530 |
+
"single_word": false,
|
| 531 |
+
"special": false
|
| 532 |
+
},
|
| 533 |
+
"66": {
|
| 534 |
+
"content": "<unused59>",
|
| 535 |
+
"lstrip": false,
|
| 536 |
+
"normalized": false,
|
| 537 |
+
"rstrip": false,
|
| 538 |
+
"single_word": false,
|
| 539 |
+
"special": false
|
| 540 |
+
},
|
| 541 |
+
"67": {
|
| 542 |
+
"content": "<unused60>",
|
| 543 |
+
"lstrip": false,
|
| 544 |
+
"normalized": false,
|
| 545 |
+
"rstrip": false,
|
| 546 |
+
"single_word": false,
|
| 547 |
+
"special": false
|
| 548 |
+
},
|
| 549 |
+
"68": {
|
| 550 |
+
"content": "<unused61>",
|
| 551 |
+
"lstrip": false,
|
| 552 |
+
"normalized": false,
|
| 553 |
+
"rstrip": false,
|
| 554 |
+
"single_word": false,
|
| 555 |
+
"special": false
|
| 556 |
+
},
|
| 557 |
+
"69": {
|
| 558 |
+
"content": "<unused62>",
|
| 559 |
+
"lstrip": false,
|
| 560 |
+
"normalized": false,
|
| 561 |
+
"rstrip": false,
|
| 562 |
+
"single_word": false,
|
| 563 |
+
"special": false
|
| 564 |
+
},
|
| 565 |
+
"70": {
|
| 566 |
+
"content": "<unused63>",
|
| 567 |
+
"lstrip": false,
|
| 568 |
+
"normalized": false,
|
| 569 |
+
"rstrip": false,
|
| 570 |
+
"single_word": false,
|
| 571 |
+
"special": false
|
| 572 |
+
},
|
| 573 |
+
"71": {
|
| 574 |
+
"content": "<unused64>",
|
| 575 |
+
"lstrip": false,
|
| 576 |
+
"normalized": false,
|
| 577 |
+
"rstrip": false,
|
| 578 |
+
"single_word": false,
|
| 579 |
+
"special": false
|
| 580 |
+
},
|
| 581 |
+
"72": {
|
| 582 |
+
"content": "<unused65>",
|
| 583 |
+
"lstrip": false,
|
| 584 |
+
"normalized": false,
|
| 585 |
+
"rstrip": false,
|
| 586 |
+
"single_word": false,
|
| 587 |
+
"special": false
|
| 588 |
+
},
|
| 589 |
+
"73": {
|
| 590 |
+
"content": "<unused66>",
|
| 591 |
+
"lstrip": false,
|
| 592 |
+
"normalized": false,
|
| 593 |
+
"rstrip": false,
|
| 594 |
+
"single_word": false,
|
| 595 |
+
"special": false
|
| 596 |
+
},
|
| 597 |
+
"74": {
|
| 598 |
+
"content": "<unused67>",
|
| 599 |
+
"lstrip": false,
|
| 600 |
+
"normalized": false,
|
| 601 |
+
"rstrip": false,
|
| 602 |
+
"single_word": false,
|
| 603 |
+
"special": false
|
| 604 |
+
},
|
| 605 |
+
"75": {
|
| 606 |
+
"content": "<unused68>",
|
| 607 |
+
"lstrip": false,
|
| 608 |
+
"normalized": false,
|
| 609 |
+
"rstrip": false,
|
| 610 |
+
"single_word": false,
|
| 611 |
+
"special": false
|
| 612 |
+
},
|
| 613 |
+
"76": {
|
| 614 |
+
"content": "<unused69>",
|
| 615 |
+
"lstrip": false,
|
| 616 |
+
"normalized": false,
|
| 617 |
+
"rstrip": false,
|
| 618 |
+
"single_word": false,
|
| 619 |
+
"special": false
|
| 620 |
+
},
|
| 621 |
+
"77": {
|
| 622 |
+
"content": "<unused70>",
|
| 623 |
+
"lstrip": false,
|
| 624 |
+
"normalized": false,
|
| 625 |
+
"rstrip": false,
|
| 626 |
+
"single_word": false,
|
| 627 |
+
"special": false
|
| 628 |
+
},
|
| 629 |
+
"78": {
|
| 630 |
+
"content": "<unused71>",
|
| 631 |
+
"lstrip": false,
|
| 632 |
+
"normalized": false,
|
| 633 |
+
"rstrip": false,
|
| 634 |
+
"single_word": false,
|
| 635 |
+
"special": false
|
| 636 |
+
},
|
| 637 |
+
"79": {
|
| 638 |
+
"content": "<unused72>",
|
| 639 |
+
"lstrip": false,
|
| 640 |
+
"normalized": false,
|
| 641 |
+
"rstrip": false,
|
| 642 |
+
"single_word": false,
|
| 643 |
+
"special": false
|
| 644 |
+
},
|
| 645 |
+
"80": {
|
| 646 |
+
"content": "<unused73>",
|
| 647 |
+
"lstrip": false,
|
| 648 |
+
"normalized": false,
|
| 649 |
+
"rstrip": false,
|
| 650 |
+
"single_word": false,
|
| 651 |
+
"special": false
|
| 652 |
+
},
|
| 653 |
+
"81": {
|
| 654 |
+
"content": "<unused74>",
|
| 655 |
+
"lstrip": false,
|
| 656 |
+
"normalized": false,
|
| 657 |
+
"rstrip": false,
|
| 658 |
+
"single_word": false,
|
| 659 |
+
"special": false
|
| 660 |
+
},
|
| 661 |
+
"82": {
|
| 662 |
+
"content": "<unused75>",
|
| 663 |
+
"lstrip": false,
|
| 664 |
+
"normalized": false,
|
| 665 |
+
"rstrip": false,
|
| 666 |
+
"single_word": false,
|
| 667 |
+
"special": false
|
| 668 |
+
},
|
| 669 |
+
"83": {
|
| 670 |
+
"content": "<unused76>",
|
| 671 |
+
"lstrip": false,
|
| 672 |
+
"normalized": false,
|
| 673 |
+
"rstrip": false,
|
| 674 |
+
"single_word": false,
|
| 675 |
+
"special": false
|
| 676 |
+
},
|
| 677 |
+
"84": {
|
| 678 |
+
"content": "<unused77>",
|
| 679 |
+
"lstrip": false,
|
| 680 |
+
"normalized": false,
|
| 681 |
+
"rstrip": false,
|
| 682 |
+
"single_word": false,
|
| 683 |
+
"special": false
|
| 684 |
+
},
|
| 685 |
+
"85": {
|
| 686 |
+
"content": "<unused78>",
|
| 687 |
+
"lstrip": false,
|
| 688 |
+
"normalized": false,
|
| 689 |
+
"rstrip": false,
|
| 690 |
+
"single_word": false,
|
| 691 |
+
"special": false
|
| 692 |
+
},
|
| 693 |
+
"86": {
|
| 694 |
+
"content": "<unused79>",
|
| 695 |
+
"lstrip": false,
|
| 696 |
+
"normalized": false,
|
| 697 |
+
"rstrip": false,
|
| 698 |
+
"single_word": false,
|
| 699 |
+
"special": false
|
| 700 |
+
},
|
| 701 |
+
"87": {
|
| 702 |
+
"content": "<unused80>",
|
| 703 |
+
"lstrip": false,
|
| 704 |
+
"normalized": false,
|
| 705 |
+
"rstrip": false,
|
| 706 |
+
"single_word": false,
|
| 707 |
+
"special": false
|
| 708 |
+
},
|
| 709 |
+
"88": {
|
| 710 |
+
"content": "<unused81>",
|
| 711 |
+
"lstrip": false,
|
| 712 |
+
"normalized": false,
|
| 713 |
+
"rstrip": false,
|
| 714 |
+
"single_word": false,
|
| 715 |
+
"special": false
|
| 716 |
+
},
|
| 717 |
+
"89": {
|
| 718 |
+
"content": "<unused82>",
|
| 719 |
+
"lstrip": false,
|
| 720 |
+
"normalized": false,
|
| 721 |
+
"rstrip": false,
|
| 722 |
+
"single_word": false,
|
| 723 |
+
"special": false
|
| 724 |
+
},
|
| 725 |
+
"90": {
|
| 726 |
+
"content": "<unused83>",
|
| 727 |
+
"lstrip": false,
|
| 728 |
+
"normalized": false,
|
| 729 |
+
"rstrip": false,
|
| 730 |
+
"single_word": false,
|
| 731 |
+
"special": false
|
| 732 |
+
},
|
| 733 |
+
"91": {
|
| 734 |
+
"content": "<unused84>",
|
| 735 |
+
"lstrip": false,
|
| 736 |
+
"normalized": false,
|
| 737 |
+
"rstrip": false,
|
| 738 |
+
"single_word": false,
|
| 739 |
+
"special": false
|
| 740 |
+
},
|
| 741 |
+
"92": {
|
| 742 |
+
"content": "<unused85>",
|
| 743 |
+
"lstrip": false,
|
| 744 |
+
"normalized": false,
|
| 745 |
+
"rstrip": false,
|
| 746 |
+
"single_word": false,
|
| 747 |
+
"special": false
|
| 748 |
+
},
|
| 749 |
+
"93": {
|
| 750 |
+
"content": "<unused86>",
|
| 751 |
+
"lstrip": false,
|
| 752 |
+
"normalized": false,
|
| 753 |
+
"rstrip": false,
|
| 754 |
+
"single_word": false,
|
| 755 |
+
"special": false
|
| 756 |
+
},
|
| 757 |
+
"94": {
|
| 758 |
+
"content": "<unused87>",
|
| 759 |
+
"lstrip": false,
|
| 760 |
+
"normalized": false,
|
| 761 |
+
"rstrip": false,
|
| 762 |
+
"single_word": false,
|
| 763 |
+
"special": false
|
| 764 |
+
},
|
| 765 |
+
"95": {
|
| 766 |
+
"content": "<unused88>",
|
| 767 |
+
"lstrip": false,
|
| 768 |
+
"normalized": false,
|
| 769 |
+
"rstrip": false,
|
| 770 |
+
"single_word": false,
|
| 771 |
+
"special": false
|
| 772 |
+
},
|
| 773 |
+
"96": {
|
| 774 |
+
"content": "<unused89>",
|
| 775 |
+
"lstrip": false,
|
| 776 |
+
"normalized": false,
|
| 777 |
+
"rstrip": false,
|
| 778 |
+
"single_word": false,
|
| 779 |
+
"special": false
|
| 780 |
+
},
|
| 781 |
+
"97": {
|
| 782 |
+
"content": "<unused90>",
|
| 783 |
+
"lstrip": false,
|
| 784 |
+
"normalized": false,
|
| 785 |
+
"rstrip": false,
|
| 786 |
+
"single_word": false,
|
| 787 |
+
"special": false
|
| 788 |
+
},
|
| 789 |
+
"98": {
|
| 790 |
+
"content": "<unused91>",
|
| 791 |
+
"lstrip": false,
|
| 792 |
+
"normalized": false,
|
| 793 |
+
"rstrip": false,
|
| 794 |
+
"single_word": false,
|
| 795 |
+
"special": false
|
| 796 |
+
},
|
| 797 |
+
"99": {
|
| 798 |
+
"content": "<unused92>",
|
| 799 |
+
"lstrip": false,
|
| 800 |
+
"normalized": false,
|
| 801 |
+
"rstrip": false,
|
| 802 |
+
"single_word": false,
|
| 803 |
+
"special": false
|
| 804 |
+
},
|
| 805 |
+
"100": {
|
| 806 |
+
"content": "<unused93>",
|
| 807 |
+
"lstrip": false,
|
| 808 |
+
"normalized": false,
|
| 809 |
+
"rstrip": false,
|
| 810 |
+
"single_word": false,
|
| 811 |
+
"special": false
|
| 812 |
+
},
|
| 813 |
+
"101": {
|
| 814 |
+
"content": "<unused94>",
|
| 815 |
+
"lstrip": false,
|
| 816 |
+
"normalized": false,
|
| 817 |
+
"rstrip": false,
|
| 818 |
+
"single_word": false,
|
| 819 |
+
"special": false
|
| 820 |
+
},
|
| 821 |
+
"102": {
|
| 822 |
+
"content": "<unused95>",
|
| 823 |
+
"lstrip": false,
|
| 824 |
+
"normalized": false,
|
| 825 |
+
"rstrip": false,
|
| 826 |
+
"single_word": false,
|
| 827 |
+
"special": false
|
| 828 |
+
},
|
| 829 |
+
"103": {
|
| 830 |
+
"content": "<unused96>",
|
| 831 |
+
"lstrip": false,
|
| 832 |
+
"normalized": false,
|
| 833 |
+
"rstrip": false,
|
| 834 |
+
"single_word": false,
|
| 835 |
+
"special": false
|
| 836 |
+
},
|
| 837 |
+
"104": {
|
| 838 |
+
"content": "<unused97>",
|
| 839 |
+
"lstrip": false,
|
| 840 |
+
"normalized": false,
|
| 841 |
+
"rstrip": false,
|
| 842 |
+
"single_word": false,
|
| 843 |
+
"special": false
|
| 844 |
+
},
|
| 845 |
+
"105": {
|
| 846 |
+
"content": "<unused98>",
|
| 847 |
+
"lstrip": false,
|
| 848 |
+
"normalized": false,
|
| 849 |
+
"rstrip": false,
|
| 850 |
+
"single_word": false,
|
| 851 |
+
"special": false
|
| 852 |
+
},
|
| 853 |
+
"106": {
|
| 854 |
+
"content": "<start_of_turn>",
|
| 855 |
+
"lstrip": false,
|
| 856 |
+
"normalized": false,
|
| 857 |
+
"rstrip": false,
|
| 858 |
+
"single_word": false,
|
| 859 |
+
"special": true
|
| 860 |
+
},
|
| 861 |
+
"107": {
|
| 862 |
+
"content": "<end_of_turn>",
|
| 863 |
+
"lstrip": false,
|
| 864 |
+
"normalized": false,
|
| 865 |
+
"rstrip": false,
|
| 866 |
+
"single_word": false,
|
| 867 |
+
"special": true
|
| 868 |
+
},
|
| 869 |
+
"108": {
|
| 870 |
+
"content": "\n",
|
| 871 |
+
"lstrip": false,
|
| 872 |
+
"normalized": false,
|
| 873 |
+
"rstrip": false,
|
| 874 |
+
"single_word": false,
|
| 875 |
+
"special": false
|
| 876 |
+
},
|
| 877 |
+
"109": {
|
| 878 |
+
"content": "\n\n",
|
| 879 |
+
"lstrip": false,
|
| 880 |
+
"normalized": false,
|
| 881 |
+
"rstrip": false,
|
| 882 |
+
"single_word": false,
|
| 883 |
+
"special": false
|
| 884 |
+
},
|
| 885 |
+
"110": {
|
| 886 |
+
"content": "\n\n\n",
|
| 887 |
+
"lstrip": false,
|
| 888 |
+
"normalized": false,
|
| 889 |
+
"rstrip": false,
|
| 890 |
+
"single_word": false,
|
| 891 |
+
"special": false
|
| 892 |
+
},
|
| 893 |
+
"111": {
|
| 894 |
+
"content": "\n\n\n\n",
|
| 895 |
+
"lstrip": false,
|
| 896 |
+
"normalized": false,
|
| 897 |
+
"rstrip": false,
|
| 898 |
+
"single_word": false,
|
| 899 |
+
"special": false
|
| 900 |
+
},
|
| 901 |
+
"112": {
|
| 902 |
+
"content": "\n\n\n\n\n",
|
| 903 |
+
"lstrip": false,
|
| 904 |
+
"normalized": false,
|
| 905 |
+
"rstrip": false,
|
| 906 |
+
"single_word": false,
|
| 907 |
+
"special": false
|
| 908 |
+
},
|
| 909 |
+
"113": {
|
| 910 |
+
"content": "\n\n\n\n\n\n",
|
| 911 |
+
"lstrip": false,
|
| 912 |
+
"normalized": false,
|
| 913 |
+
"rstrip": false,
|
| 914 |
+
"single_word": false,
|
| 915 |
+
"special": false
|
| 916 |
+
},
|
| 917 |
+
"114": {
|
| 918 |
+
"content": "\n\n\n\n\n\n\n",
|
| 919 |
+
"lstrip": false,
|
| 920 |
+
"normalized": false,
|
| 921 |
+
"rstrip": false,
|
| 922 |
+
"single_word": false,
|
| 923 |
+
"special": false
|
| 924 |
+
},
|
| 925 |
+
"115": {
|
| 926 |
+
"content": "\n\n\n\n\n\n\n\n",
|
| 927 |
+
"lstrip": false,
|
| 928 |
+
"normalized": false,
|
| 929 |
+
"rstrip": false,
|
| 930 |
+
"single_word": false,
|
| 931 |
+
"special": false
|
| 932 |
+
},
|
| 933 |
+
"116": {
|
| 934 |
+
"content": "\n\n\n\n\n\n\n\n\n",
|
| 935 |
+
"lstrip": false,
|
| 936 |
+
"normalized": false,
|
| 937 |
+
"rstrip": false,
|
| 938 |
+
"single_word": false,
|
| 939 |
+
"special": false
|
| 940 |
+
},
|
| 941 |
+
"117": {
|
| 942 |
+
"content": "\n\n\n\n\n\n\n\n\n\n",
|
| 943 |
+
"lstrip": false,
|
| 944 |
+
"normalized": false,
|
| 945 |
+
"rstrip": false,
|
| 946 |
+
"single_word": false,
|
| 947 |
+
"special": false
|
| 948 |
+
},
|
| 949 |
+
"118": {
|
| 950 |
+
"content": "\n\n\n\n\n\n\n\n\n\n\n",
|
| 951 |
+
"lstrip": false,
|
| 952 |
+
"normalized": false,
|
| 953 |
+
"rstrip": false,
|
| 954 |
+
"single_word": false,
|
| 955 |
+
"special": false
|
| 956 |
+
},
|
| 957 |
+
"119": {
|
| 958 |
+
"content": "\n\n\n\n\n\n\n\n\n\n\n\n",
|
| 959 |
+
"lstrip": false,
|
| 960 |
+
"normalized": false,
|
| 961 |
+
"rstrip": false,
|
| 962 |
+
"single_word": false,
|
| 963 |
+
"special": false
|
| 964 |
+
},
|
| 965 |
+
"120": {
|
| 966 |
+
"content": "\n\n\n\n\n\n\n\n\n\n\n\n\n",
|
| 967 |
+
"lstrip": false,
|
| 968 |
+
"normalized": false,
|
| 969 |
+
"rstrip": false,
|
| 970 |
+
"single_word": false,
|
| 971 |
+
"special": false
|
| 972 |
+
},
|
| 973 |
+
"121": {
|
| 974 |
+
"content": "\n\n\n\n\n\n\n\n\n\n\n\n\n\n",
|
| 975 |
+
"lstrip": false,
|
| 976 |
+
"normalized": false,
|
| 977 |
+
"rstrip": false,
|
| 978 |
+
"single_word": false,
|
| 979 |
+
"special": false
|
| 980 |
+
},
|
| 981 |
+
"122": {
|
| 982 |
+
"content": "\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n",
|
| 983 |
+
"lstrip": false,
|
| 984 |
+
"normalized": false,
|
| 985 |
+
"rstrip": false,
|
| 986 |
+
"single_word": false,
|
| 987 |
+
"special": false
|
| 988 |
+
},
|
| 989 |
+
"123": {
|
| 990 |
+
"content": "\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n",
|
| 991 |
+
"lstrip": false,
|
| 992 |
+
"normalized": false,
|
| 993 |
+
"rstrip": false,
|
| 994 |
+
"single_word": false,
|
| 995 |
+
"special": false
|
| 996 |
+
},
|
| 997 |
+
"124": {
|
| 998 |
+
"content": "\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n",
|
| 999 |
+
"lstrip": false,
|
| 1000 |
+
"normalized": false,
|
| 1001 |
+
"rstrip": false,
|
| 1002 |
+
"single_word": false,
|
| 1003 |
+
"special": false
|
| 1004 |
+
},
|
| 1005 |
+
"125": {
|
| 1006 |
+
"content": "\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n",
|
| 1007 |
+
"lstrip": false,
|
| 1008 |
+
"normalized": false,
|
| 1009 |
+
"rstrip": false,
|
| 1010 |
+
"single_word": false,
|
| 1011 |
+
"special": false
|
| 1012 |
+
},
|
| 1013 |
+
"126": {
|
| 1014 |
+
"content": "\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n",
|
| 1015 |
+
"lstrip": false,
|
| 1016 |
+
"normalized": false,
|
| 1017 |
+
"rstrip": false,
|
| 1018 |
+
"single_word": false,
|
| 1019 |
+
"special": false
|
| 1020 |
+
},
|
| 1021 |
+
"127": {
|
| 1022 |
+
"content": "\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n",
|
| 1023 |
+
"lstrip": false,
|
| 1024 |
+
"normalized": false,
|
| 1025 |
+
"rstrip": false,
|
| 1026 |
+
"single_word": false,
|
| 1027 |
+
"special": false
|
| 1028 |
+
},
|
| 1029 |
+
"128": {
|
| 1030 |
+
"content": "\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n",
|
| 1031 |
+
"lstrip": false,
|
| 1032 |
+
"normalized": false,
|
| 1033 |
+
"rstrip": false,
|
| 1034 |
+
"single_word": false,
|
| 1035 |
+
"special": false
|
| 1036 |
+
},
|
| 1037 |
+
"129": {
|
| 1038 |
+
"content": "\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n",
|
| 1039 |
+
"lstrip": false,
|
| 1040 |
+
"normalized": false,
|
| 1041 |
+
"rstrip": false,
|
| 1042 |
+
"single_word": false,
|
| 1043 |
+
"special": false
|
| 1044 |
+
},
|
| 1045 |
+
"130": {
|
| 1046 |
+
"content": "\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n",
|
| 1047 |
+
"lstrip": false,
|
| 1048 |
+
"normalized": false,
|
| 1049 |
+
"rstrip": false,
|
| 1050 |
+
"single_word": false,
|
| 1051 |
+
"special": false
|
| 1052 |
+
},
|
| 1053 |
+
"131": {
|
| 1054 |
+
"content": "\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n",
|
| 1055 |
+
"lstrip": false,
|
| 1056 |
+
"normalized": false,
|
| 1057 |
+
"rstrip": false,
|
| 1058 |
+
"single_word": false,
|
| 1059 |
+
"special": false
|
| 1060 |
+
},
|
| 1061 |
+
"132": {
|
| 1062 |
+
"content": "\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n",
|
| 1063 |
+
"lstrip": false,
|
| 1064 |
+
"normalized": false,
|
| 1065 |
+
"rstrip": false,
|
| 1066 |
+
"single_word": false,
|
| 1067 |
+
"special": false
|
| 1068 |
+
},
|
| 1069 |
+
"133": {
|
| 1070 |
+
"content": "\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n",
|
| 1071 |
+
"lstrip": false,
|
| 1072 |
+
"normalized": false,
|
| 1073 |
+
"rstrip": false,
|
| 1074 |
+
"single_word": false,
|
| 1075 |
+
"special": false
|
| 1076 |
+
},
|
| 1077 |
+
"134": {
|
| 1078 |
+
"content": "\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n",
|
| 1079 |
+
"lstrip": false,
|
| 1080 |
+
"normalized": false,
|
| 1081 |
+
"rstrip": false,
|
| 1082 |
+
"single_word": false,
|
| 1083 |
+
"special": false
|
| 1084 |
+
},
|
| 1085 |
+
"135": {
|
| 1086 |
+
"content": "\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n",
|
| 1087 |
+
"lstrip": false,
|
| 1088 |
+
"normalized": false,
|
| 1089 |
+
"rstrip": false,
|
| 1090 |
+
"single_word": false,
|
| 1091 |
+
"special": false
|
| 1092 |
+
},
|
| 1093 |
+
"136": {
|
| 1094 |
+
"content": "\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n",
|
| 1095 |
+
"lstrip": false,
|
| 1096 |
+
"normalized": false,
|
| 1097 |
+
"rstrip": false,
|
| 1098 |
+
"single_word": false,
|
| 1099 |
+
"special": false
|
| 1100 |
+
},
|
| 1101 |
+
"137": {
|
| 1102 |
+
"content": "\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n",
|
| 1103 |
+
"lstrip": false,
|
| 1104 |
+
"normalized": false,
|
| 1105 |
+
"rstrip": false,
|
| 1106 |
+
"single_word": false,
|
| 1107 |
+
"special": false
|
| 1108 |
+
},
|
| 1109 |
+
"138": {
|
| 1110 |
+
"content": "\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n",
|
| 1111 |
+
"lstrip": false,
|
| 1112 |
+
"normalized": false,
|
| 1113 |
+
"rstrip": false,
|
| 1114 |
+
"single_word": false,
|
| 1115 |
+
"special": false
|
| 1116 |
+
},
|
| 1117 |
+
"139": {
|
| 1118 |
+
"content": "▁▁",
|
| 1119 |
+
"lstrip": false,
|
| 1120 |
+
"normalized": false,
|
| 1121 |
+
"rstrip": false,
|
| 1122 |
+
"single_word": false,
|
| 1123 |
+
"special": false
|
| 1124 |
+
},
|
| 1125 |
+
"140": {
|
| 1126 |
+
"content": "▁▁▁",
|
| 1127 |
+
"lstrip": false,
|
| 1128 |
+
"normalized": false,
|
| 1129 |
+
"rstrip": false,
|
| 1130 |
+
"single_word": false,
|
| 1131 |
+
"special": false
|
| 1132 |
+
},
|
| 1133 |
+
"141": {
|
| 1134 |
+
"content": "▁▁▁▁",
|
| 1135 |
+
"lstrip": false,
|
| 1136 |
+
"normalized": false,
|
| 1137 |
+
"rstrip": false,
|
| 1138 |
+
"single_word": false,
|
| 1139 |
+
"special": false
|
| 1140 |
+
},
|
| 1141 |
+
"142": {
|
| 1142 |
+
"content": "▁▁▁▁▁",
|
| 1143 |
+
"lstrip": false,
|
| 1144 |
+
"normalized": false,
|
| 1145 |
+
"rstrip": false,
|
| 1146 |
+
"single_word": false,
|
| 1147 |
+
"special": false
|
| 1148 |
+
},
|
| 1149 |
+
"143": {
|
| 1150 |
+
"content": "▁▁▁▁▁▁",
|
| 1151 |
+
"lstrip": false,
|
| 1152 |
+
"normalized": false,
|
| 1153 |
+
"rstrip": false,
|
| 1154 |
+
"single_word": false,
|
| 1155 |
+
"special": false
|
| 1156 |
+
},
|
| 1157 |
+
"144": {
|
| 1158 |
+
"content": "▁▁▁▁▁▁▁",
|
| 1159 |
+
"lstrip": false,
|
| 1160 |
+
"normalized": false,
|
| 1161 |
+
"rstrip": false,
|
| 1162 |
+
"single_word": false,
|
| 1163 |
+
"special": false
|
| 1164 |
+
},
|
| 1165 |
+
"145": {
|
| 1166 |
+
"content": "▁▁▁▁▁▁▁▁",
|
| 1167 |
+
"lstrip": false,
|
| 1168 |
+
"normalized": false,
|
| 1169 |
+
"rstrip": false,
|
| 1170 |
+
"single_word": false,
|
| 1171 |
+
"special": false
|
| 1172 |
+
},
|
| 1173 |
+
"146": {
|
| 1174 |
+
"content": "▁▁▁▁▁▁▁▁▁",
|
| 1175 |
+
"lstrip": false,
|
| 1176 |
+
"normalized": false,
|
| 1177 |
+
"rstrip": false,
|
| 1178 |
+
"single_word": false,
|
| 1179 |
+
"special": false
|
| 1180 |
+
},
|
| 1181 |
+
"147": {
|
| 1182 |
+
"content": "▁▁▁▁▁▁▁▁▁▁",
|
| 1183 |
+
"lstrip": false,
|
| 1184 |
+
"normalized": false,
|
| 1185 |
+
"rstrip": false,
|
| 1186 |
+
"single_word": false,
|
| 1187 |
+
"special": false
|
| 1188 |
+
},
|
| 1189 |
+
"148": {
|
| 1190 |
+
"content": "▁▁▁▁▁▁▁▁▁▁▁",
|
| 1191 |
+
"lstrip": false,
|
| 1192 |
+
"normalized": false,
|
| 1193 |
+
"rstrip": false,
|
| 1194 |
+
"single_word": false,
|
| 1195 |
+
"special": false
|
| 1196 |
+
},
|
| 1197 |
+
"149": {
|
| 1198 |
+
"content": "▁▁▁▁▁▁▁▁▁▁▁▁",
|
| 1199 |
+
"lstrip": false,
|
| 1200 |
+
"normalized": false,
|
| 1201 |
+
"rstrip": false,
|
| 1202 |
+
"single_word": false,
|
| 1203 |
+
"special": false
|
| 1204 |
+
},
|
| 1205 |
+
"150": {
|
| 1206 |
+
"content": "▁▁▁▁▁▁▁▁▁▁▁▁▁",
|
| 1207 |
+
"lstrip": false,
|
| 1208 |
+
"normalized": false,
|
| 1209 |
+
"rstrip": false,
|
| 1210 |
+
"single_word": false,
|
| 1211 |
+
"special": false
|
| 1212 |
+
},
|
| 1213 |
+
"151": {
|
| 1214 |
+
"content": "▁▁▁▁▁▁▁▁▁▁▁▁▁▁",
|
| 1215 |
+
"lstrip": false,
|
| 1216 |
+
"normalized": false,
|
| 1217 |
+
"rstrip": false,
|
| 1218 |
+
"single_word": false,
|
| 1219 |
+
"special": false
|
| 1220 |
+
},
|
| 1221 |
+
"152": {
|
| 1222 |
+
"content": "▁▁▁▁▁▁▁▁▁▁▁▁▁▁▁",
|
| 1223 |
+
"lstrip": false,
|
| 1224 |
+
"normalized": false,
|
| 1225 |
+
"rstrip": false,
|
| 1226 |
+
"single_word": false,
|
| 1227 |
+
"special": false
|
| 1228 |
+
},
|
| 1229 |
+
"153": {
|
| 1230 |
+
"content": "▁▁▁▁▁▁▁▁▁▁▁▁▁▁▁▁",
|
| 1231 |
+
"lstrip": false,
|
| 1232 |
+
"normalized": false,
|
| 1233 |
+
"rstrip": false,
|
| 1234 |
+
"single_word": false,
|
| 1235 |
+
"special": false
|
| 1236 |
+
},
|
| 1237 |
+
"154": {
|
| 1238 |
+
"content": "▁▁▁▁▁▁▁▁▁▁▁▁▁▁▁▁▁",
|
| 1239 |
+
"lstrip": false,
|
| 1240 |
+
"normalized": false,
|
| 1241 |
+
"rstrip": false,
|
| 1242 |
+
"single_word": false,
|
| 1243 |
+
"special": false
|
| 1244 |
+
},
|
| 1245 |
+
"155": {
|
| 1246 |
+
"content": "▁▁▁▁▁▁▁▁▁▁▁▁▁▁▁▁▁▁",
|
| 1247 |
+
"lstrip": false,
|
| 1248 |
+
"normalized": false,
|
| 1249 |
+
"rstrip": false,
|
| 1250 |
+
"single_word": false,
|
| 1251 |
+
"special": false
|
| 1252 |
+
},
|
| 1253 |
+
"156": {
|
| 1254 |
+
"content": "▁▁▁▁▁▁▁▁▁▁▁▁▁▁▁▁▁▁▁",
|
| 1255 |
+
"lstrip": false,
|
| 1256 |
+
"normalized": false,
|
| 1257 |
+
"rstrip": false,
|
| 1258 |
+
"single_word": false,
|
| 1259 |
+
"special": false
|
| 1260 |
+
},
|
| 1261 |
+
"157": {
|
| 1262 |
+
"content": "▁▁▁▁▁▁▁▁▁▁▁▁▁▁▁▁▁▁▁▁",
|
| 1263 |
+
"lstrip": false,
|
| 1264 |
+
"normalized": false,
|
| 1265 |
+
"rstrip": false,
|
| 1266 |
+
"single_word": false,
|
| 1267 |
+
"special": false
|
| 1268 |
+
},
|
| 1269 |
+
"158": {
|
| 1270 |
+
"content": "▁▁▁▁▁▁▁▁▁▁▁▁▁▁▁▁▁▁▁▁▁",
|
| 1271 |
+
"lstrip": false,
|
| 1272 |
+
"normalized": false,
|
| 1273 |
+
"rstrip": false,
|
| 1274 |
+
"single_word": false,
|
| 1275 |
+
"special": false
|
| 1276 |
+
},
|
| 1277 |
+
"159": {
|
| 1278 |
+
"content": "▁▁▁▁▁▁▁▁▁▁▁▁▁▁▁▁▁▁▁▁▁▁",
|
| 1279 |
+
"lstrip": false,
|
| 1280 |
+
"normalized": false,
|
| 1281 |
+
"rstrip": false,
|
| 1282 |
+
"single_word": false,
|
| 1283 |
+
"special": false
|
| 1284 |
+
},
|
| 1285 |
+
"160": {
|
| 1286 |
+
"content": "▁▁▁▁▁▁▁▁▁▁▁▁▁▁▁▁▁▁▁▁▁▁▁",
|
| 1287 |
+
"lstrip": false,
|
| 1288 |
+
"normalized": false,
|
| 1289 |
+
"rstrip": false,
|
| 1290 |
+
"single_word": false,
|
| 1291 |
+
"special": false
|
| 1292 |
+
},
|
| 1293 |
+
"161": {
|
| 1294 |
+
"content": "▁▁▁▁▁▁▁▁▁▁▁▁▁▁▁▁▁▁▁▁▁▁▁▁",
|
| 1295 |
+
"lstrip": false,
|
| 1296 |
+
"normalized": false,
|
| 1297 |
+
"rstrip": false,
|
| 1298 |
+
"single_word": false,
|
| 1299 |
+
"special": false
|
| 1300 |
+
},
|
| 1301 |
+
"162": {
|
| 1302 |
+
"content": "▁▁▁▁▁▁▁▁▁▁▁▁▁▁▁▁▁▁▁▁▁▁▁▁▁",
|
| 1303 |
+
"lstrip": false,
|
| 1304 |
+
"normalized": false,
|
| 1305 |
+
"rstrip": false,
|
| 1306 |
+
"single_word": false,
|
| 1307 |
+
"special": false
|
| 1308 |
+
},
|
| 1309 |
+
"163": {
|
| 1310 |
+
"content": "▁▁▁▁▁▁▁▁▁▁▁▁▁▁▁▁▁▁▁▁▁▁▁▁▁▁",
|
| 1311 |
+
"lstrip": false,
|
| 1312 |
+
"normalized": false,
|
| 1313 |
+
"rstrip": false,
|
| 1314 |
+
"single_word": false,
|
| 1315 |
+
"special": false
|
| 1316 |
+
},
|
| 1317 |
+
"164": {
|
| 1318 |
+
"content": "▁▁▁▁▁▁▁▁▁▁▁▁▁▁▁▁▁▁▁▁▁▁▁▁▁▁▁",
|
| 1319 |
+
"lstrip": false,
|
| 1320 |
+
"normalized": false,
|
| 1321 |
+
"rstrip": false,
|
| 1322 |
+
"single_word": false,
|
| 1323 |
+
"special": false
|
| 1324 |
+
},
|
| 1325 |
+
"165": {
|
| 1326 |
+
"content": "▁▁▁▁▁▁▁▁▁▁▁▁▁▁▁▁▁▁▁▁▁▁▁▁▁▁▁▁",
|
| 1327 |
+
"lstrip": false,
|
| 1328 |
+
"normalized": false,
|
| 1329 |
+
"rstrip": false,
|
| 1330 |
+
"single_word": false,
|
| 1331 |
+
"special": false
|
| 1332 |
+
},
|
| 1333 |
+
"166": {
|
| 1334 |
+
"content": "▁▁▁▁▁▁▁▁▁▁▁▁▁▁▁▁▁▁▁▁▁▁▁▁▁▁▁▁▁",
|
| 1335 |
+
"lstrip": false,
|
| 1336 |
+
"normalized": false,
|
| 1337 |
+
"rstrip": false,
|
| 1338 |
+
"single_word": false,
|
| 1339 |
+
"special": false
|
| 1340 |
+
},
|
| 1341 |
+
"167": {
|
| 1342 |
+
"content": "▁▁▁▁▁▁▁▁▁▁▁▁▁▁▁▁▁▁▁▁▁▁▁▁▁▁▁▁▁▁",
|
| 1343 |
+
"lstrip": false,
|
| 1344 |
+
"normalized": false,
|
| 1345 |
+
"rstrip": false,
|
| 1346 |
+
"single_word": false,
|
| 1347 |
+
"special": false
|
| 1348 |
+
},
|
| 1349 |
+
"168": {
|
| 1350 |
+
"content": "▁▁▁▁▁▁▁▁▁▁▁▁▁▁▁▁▁▁▁▁▁▁▁▁▁▁▁▁▁▁▁",
|
| 1351 |
+
"lstrip": false,
|
| 1352 |
+
"normalized": false,
|
| 1353 |
+
"rstrip": false,
|
| 1354 |
+
"single_word": false,
|
| 1355 |
+
"special": false
|
| 1356 |
+
},
|
| 1357 |
+
"169": {
|
| 1358 |
+
"content": "<table>",
|
| 1359 |
+
"lstrip": false,
|
| 1360 |
+
"normalized": false,
|
| 1361 |
+
"rstrip": false,
|
| 1362 |
+
"single_word": false,
|
| 1363 |
+
"special": false
|
| 1364 |
+
},
|
| 1365 |
+
"170": {
|
| 1366 |
+
"content": "<caption>",
|
| 1367 |
+
"lstrip": false,
|
| 1368 |
+
"normalized": false,
|
| 1369 |
+
"rstrip": false,
|
| 1370 |
+
"single_word": false,
|
| 1371 |
+
"special": false
|
| 1372 |
+
},
|
| 1373 |
+
"171": {
|
| 1374 |
+
"content": "<thead>",
|
| 1375 |
+
"lstrip": false,
|
| 1376 |
+
"normalized": false,
|
| 1377 |
+
"rstrip": false,
|
| 1378 |
+
"single_word": false,
|
| 1379 |
+
"special": false
|
| 1380 |
+
},
|
| 1381 |
+
"172": {
|
| 1382 |
+
"content": "<tbody>",
|
| 1383 |
+
"lstrip": false,
|
| 1384 |
+
"normalized": false,
|
| 1385 |
+
"rstrip": false,
|
| 1386 |
+
"single_word": false,
|
| 1387 |
+
"special": false
|
| 1388 |
+
},
|
| 1389 |
+
"173": {
|
| 1390 |
+
"content": "<tfoot>",
|
| 1391 |
+
"lstrip": false,
|
| 1392 |
+
"normalized": false,
|
| 1393 |
+
"rstrip": false,
|
| 1394 |
+
"single_word": false,
|
| 1395 |
+
"special": false
|
| 1396 |
+
},
|
| 1397 |
+
"174": {
|
| 1398 |
+
"content": "<tr>",
|
| 1399 |
+
"lstrip": false,
|
| 1400 |
+
"normalized": false,
|
| 1401 |
+
"rstrip": false,
|
| 1402 |
+
"single_word": false,
|
| 1403 |
+
"special": false
|
| 1404 |
+
},
|
| 1405 |
+
"175": {
|
| 1406 |
+
"content": "<th>",
|
| 1407 |
+
"lstrip": false,
|
| 1408 |
+
"normalized": false,
|
| 1409 |
+
"rstrip": false,
|
| 1410 |
+
"single_word": false,
|
| 1411 |
+
"special": false
|
| 1412 |
+
},
|
| 1413 |
+
"176": {
|
| 1414 |
+
"content": "<td>",
|
| 1415 |
+
"lstrip": false,
|
| 1416 |
+
"normalized": false,
|
| 1417 |
+
"rstrip": false,
|
| 1418 |
+
"single_word": false,
|
| 1419 |
+
"special": false
|
| 1420 |
+
},
|
| 1421 |
+
"177": {
|
| 1422 |
+
"content": "</table>",
|
| 1423 |
+
"lstrip": false,
|
| 1424 |
+
"normalized": false,
|
| 1425 |
+
"rstrip": false,
|
| 1426 |
+
"single_word": false,
|
| 1427 |
+
"special": false
|
| 1428 |
+
},
|
| 1429 |
+
"178": {
|
| 1430 |
+
"content": "</caption>",
|
| 1431 |
+
"lstrip": false,
|
| 1432 |
+
"normalized": false,
|
| 1433 |
+
"rstrip": false,
|
| 1434 |
+
"single_word": false,
|
| 1435 |
+
"special": false
|
| 1436 |
+
},
|
| 1437 |
+
"179": {
|
| 1438 |
+
"content": "</thead>",
|
| 1439 |
+
"lstrip": false,
|
| 1440 |
+
"normalized": false,
|
| 1441 |
+
"rstrip": false,
|
| 1442 |
+
"single_word": false,
|
| 1443 |
+
"special": false
|
| 1444 |
+
},
|
| 1445 |
+
"180": {
|
| 1446 |
+
"content": "</tbody>",
|
| 1447 |
+
"lstrip": false,
|
| 1448 |
+
"normalized": false,
|
| 1449 |
+
"rstrip": false,
|
| 1450 |
+
"single_word": false,
|
| 1451 |
+
"special": false
|
| 1452 |
+
},
|
| 1453 |
+
"181": {
|
| 1454 |
+
"content": "</tfoot>",
|
| 1455 |
+
"lstrip": false,
|
| 1456 |
+
"normalized": false,
|
| 1457 |
+
"rstrip": false,
|
| 1458 |
+
"single_word": false,
|
| 1459 |
+
"special": false
|
| 1460 |
+
},
|
| 1461 |
+
"182": {
|
| 1462 |
+
"content": "</tr>",
|
| 1463 |
+
"lstrip": false,
|
| 1464 |
+
"normalized": false,
|
| 1465 |
+
"rstrip": false,
|
| 1466 |
+
"single_word": false,
|
| 1467 |
+
"special": false
|
| 1468 |
+
},
|
| 1469 |
+
"183": {
|
| 1470 |
+
"content": "</th>",
|
| 1471 |
+
"lstrip": false,
|
| 1472 |
+
"normalized": false,
|
| 1473 |
+
"rstrip": false,
|
| 1474 |
+
"single_word": false,
|
| 1475 |
+
"special": false
|
| 1476 |
+
},
|
| 1477 |
+
"184": {
|
| 1478 |
+
"content": "</td>",
|
| 1479 |
+
"lstrip": false,
|
| 1480 |
+
"normalized": false,
|
| 1481 |
+
"rstrip": false,
|
| 1482 |
+
"single_word": false,
|
| 1483 |
+
"special": false
|
| 1484 |
+
},
|
| 1485 |
+
"185": {
|
| 1486 |
+
"content": "<h1>",
|
| 1487 |
+
"lstrip": false,
|
| 1488 |
+
"normalized": false,
|
| 1489 |
+
"rstrip": false,
|
| 1490 |
+
"single_word": false,
|
| 1491 |
+
"special": false
|
| 1492 |
+
},
|
| 1493 |
+
"186": {
|
| 1494 |
+
"content": "<h2>",
|
| 1495 |
+
"lstrip": false,
|
| 1496 |
+
"normalized": false,
|
| 1497 |
+
"rstrip": false,
|
| 1498 |
+
"single_word": false,
|
| 1499 |
+
"special": false
|
| 1500 |
+
},
|
| 1501 |
+
"187": {
|
| 1502 |
+
"content": "<h3>",
|
| 1503 |
+
"lstrip": false,
|
| 1504 |
+
"normalized": false,
|
| 1505 |
+
"rstrip": false,
|
| 1506 |
+
"single_word": false,
|
| 1507 |
+
"special": false
|
| 1508 |
+
},
|
| 1509 |
+
"188": {
|
| 1510 |
+
"content": "<h4>",
|
| 1511 |
+
"lstrip": false,
|
| 1512 |
+
"normalized": false,
|
| 1513 |
+
"rstrip": false,
|
| 1514 |
+
"single_word": false,
|
| 1515 |
+
"special": false
|
| 1516 |
+
},
|
| 1517 |
+
"189": {
|
| 1518 |
+
"content": "<h5>",
|
| 1519 |
+
"lstrip": false,
|
| 1520 |
+
"normalized": false,
|
| 1521 |
+
"rstrip": false,
|
| 1522 |
+
"single_word": false,
|
| 1523 |
+
"special": false
|
| 1524 |
+
},
|
| 1525 |
+
"190": {
|
| 1526 |
+
"content": "<h6>",
|
| 1527 |
+
"lstrip": false,
|
| 1528 |
+
"normalized": false,
|
| 1529 |
+
"rstrip": false,
|
| 1530 |
+
"single_word": false,
|
| 1531 |
+
"special": false
|
| 1532 |
+
},
|
| 1533 |
+
"191": {
|
| 1534 |
+
"content": "<blockquote>",
|
| 1535 |
+
"lstrip": false,
|
| 1536 |
+
"normalized": false,
|
| 1537 |
+
"rstrip": false,
|
| 1538 |
+
"single_word": false,
|
| 1539 |
+
"special": false
|
| 1540 |
+
},
|
| 1541 |
+
"192": {
|
| 1542 |
+
"content": "</h1>",
|
| 1543 |
+
"lstrip": false,
|
| 1544 |
+
"normalized": false,
|
| 1545 |
+
"rstrip": false,
|
| 1546 |
+
"single_word": false,
|
| 1547 |
+
"special": false
|
| 1548 |
+
},
|
| 1549 |
+
"193": {
|
| 1550 |
+
"content": "</h2>",
|
| 1551 |
+
"lstrip": false,
|
| 1552 |
+
"normalized": false,
|
| 1553 |
+
"rstrip": false,
|
| 1554 |
+
"single_word": false,
|
| 1555 |
+
"special": false
|
| 1556 |
+
},
|
| 1557 |
+
"194": {
|
| 1558 |
+
"content": "</h3>",
|
| 1559 |
+
"lstrip": false,
|
| 1560 |
+
"normalized": false,
|
| 1561 |
+
"rstrip": false,
|
| 1562 |
+
"single_word": false,
|
| 1563 |
+
"special": false
|
| 1564 |
+
},
|
| 1565 |
+
"195": {
|
| 1566 |
+
"content": "</h4>",
|
| 1567 |
+
"lstrip": false,
|
| 1568 |
+
"normalized": false,
|
| 1569 |
+
"rstrip": false,
|
| 1570 |
+
"single_word": false,
|
| 1571 |
+
"special": false
|
| 1572 |
+
},
|
| 1573 |
+
"196": {
|
| 1574 |
+
"content": "</h5>",
|
| 1575 |
+
"lstrip": false,
|
| 1576 |
+
"normalized": false,
|
| 1577 |
+
"rstrip": false,
|
| 1578 |
+
"single_word": false,
|
| 1579 |
+
"special": false
|
| 1580 |
+
},
|
| 1581 |
+
"197": {
|
| 1582 |
+
"content": "</h6>",
|
| 1583 |
+
"lstrip": false,
|
| 1584 |
+
"normalized": false,
|
| 1585 |
+
"rstrip": false,
|
| 1586 |
+
"single_word": false,
|
| 1587 |
+
"special": false
|
| 1588 |
+
},
|
| 1589 |
+
"198": {
|
| 1590 |
+
"content": "</blockquote>",
|
| 1591 |
+
"lstrip": false,
|
| 1592 |
+
"normalized": false,
|
| 1593 |
+
"rstrip": false,
|
| 1594 |
+
"single_word": false,
|
| 1595 |
+
"special": false
|
| 1596 |
+
},
|
| 1597 |
+
"199": {
|
| 1598 |
+
"content": "<strong>",
|
| 1599 |
+
"lstrip": false,
|
| 1600 |
+
"normalized": false,
|
| 1601 |
+
"rstrip": false,
|
| 1602 |
+
"single_word": false,
|
| 1603 |
+
"special": false
|
| 1604 |
+
},
|
| 1605 |
+
"200": {
|
| 1606 |
+
"content": "<em>",
|
| 1607 |
+
"lstrip": false,
|
| 1608 |
+
"normalized": false,
|
| 1609 |
+
"rstrip": false,
|
| 1610 |
+
"single_word": false,
|
| 1611 |
+
"special": false
|
| 1612 |
+
},
|
| 1613 |
+
"201": {
|
| 1614 |
+
"content": "<b>",
|
| 1615 |
+
"lstrip": false,
|
| 1616 |
+
"normalized": false,
|
| 1617 |
+
"rstrip": false,
|
| 1618 |
+
"single_word": false,
|
| 1619 |
+
"special": false
|
| 1620 |
+
},
|
| 1621 |
+
"202": {
|
| 1622 |
+
"content": "<i>",
|
| 1623 |
+
"lstrip": false,
|
| 1624 |
+
"normalized": false,
|
| 1625 |
+
"rstrip": false,
|
| 1626 |
+
"single_word": false,
|
| 1627 |
+
"special": false
|
| 1628 |
+
},
|
| 1629 |
+
"203": {
|
| 1630 |
+
"content": "<u>",
|
| 1631 |
+
"lstrip": false,
|
| 1632 |
+
"normalized": false,
|
| 1633 |
+
"rstrip": false,
|
| 1634 |
+
"single_word": false,
|
| 1635 |
+
"special": false
|
| 1636 |
+
},
|
| 1637 |
+
"204": {
|
| 1638 |
+
"content": "<s>",
|
| 1639 |
+
"lstrip": false,
|
| 1640 |
+
"normalized": false,
|
| 1641 |
+
"rstrip": false,
|
| 1642 |
+
"single_word": false,
|
| 1643 |
+
"special": false
|
| 1644 |
+
},
|
| 1645 |
+
"205": {
|
| 1646 |
+
"content": "<sub>",
|
| 1647 |
+
"lstrip": false,
|
| 1648 |
+
"normalized": false,
|
| 1649 |
+
"rstrip": false,
|
| 1650 |
+
"single_word": false,
|
| 1651 |
+
"special": false
|
| 1652 |
+
},
|
| 1653 |
+
"206": {
|
| 1654 |
+
"content": "<sup>",
|
| 1655 |
+
"lstrip": false,
|
| 1656 |
+
"normalized": false,
|
| 1657 |
+
"rstrip": false,
|
| 1658 |
+
"single_word": false,
|
| 1659 |
+
"special": false
|
| 1660 |
+
},
|
| 1661 |
+
"207": {
|
| 1662 |
+
"content": "<code>",
|
| 1663 |
+
"lstrip": false,
|
| 1664 |
+
"normalized": false,
|
| 1665 |
+
"rstrip": false,
|
| 1666 |
+
"single_word": false,
|
| 1667 |
+
"special": false
|
| 1668 |
+
},
|
| 1669 |
+
"208": {
|
| 1670 |
+
"content": "</strong>",
|
| 1671 |
+
"lstrip": false,
|
| 1672 |
+
"normalized": false,
|
| 1673 |
+
"rstrip": false,
|
| 1674 |
+
"single_word": false,
|
| 1675 |
+
"special": false
|
| 1676 |
+
},
|
| 1677 |
+
"209": {
|
| 1678 |
+
"content": "</em>",
|
| 1679 |
+
"lstrip": false,
|
| 1680 |
+
"normalized": false,
|
| 1681 |
+
"rstrip": false,
|
| 1682 |
+
"single_word": false,
|
| 1683 |
+
"special": false
|
| 1684 |
+
},
|
| 1685 |
+
"210": {
|
| 1686 |
+
"content": "</b>",
|
| 1687 |
+
"lstrip": false,
|
| 1688 |
+
"normalized": false,
|
| 1689 |
+
"rstrip": false,
|
| 1690 |
+
"single_word": false,
|
| 1691 |
+
"special": false
|
| 1692 |
+
},
|
| 1693 |
+
"211": {
|
| 1694 |
+
"content": "</i>",
|
| 1695 |
+
"lstrip": false,
|
| 1696 |
+
"normalized": false,
|
| 1697 |
+
"rstrip": false,
|
| 1698 |
+
"single_word": false,
|
| 1699 |
+
"special": false
|
| 1700 |
+
},
|
| 1701 |
+
"212": {
|
| 1702 |
+
"content": "</u>",
|
| 1703 |
+
"lstrip": false,
|
| 1704 |
+
"normalized": false,
|
| 1705 |
+
"rstrip": false,
|
| 1706 |
+
"single_word": false,
|
| 1707 |
+
"special": false
|
| 1708 |
+
},
|
| 1709 |
+
"213": {
|
| 1710 |
+
"content": "</s>",
|
| 1711 |
+
"lstrip": false,
|
| 1712 |
+
"normalized": false,
|
| 1713 |
+
"rstrip": false,
|
| 1714 |
+
"single_word": false,
|
| 1715 |
+
"special": false
|
| 1716 |
+
},
|
| 1717 |
+
"214": {
|
| 1718 |
+
"content": "</sub>",
|
| 1719 |
+
"lstrip": false,
|
| 1720 |
+
"normalized": false,
|
| 1721 |
+
"rstrip": false,
|
| 1722 |
+
"single_word": false,
|
| 1723 |
+
"special": false
|
| 1724 |
+
},
|
| 1725 |
+
"215": {
|
| 1726 |
+
"content": "</sup>",
|
| 1727 |
+
"lstrip": false,
|
| 1728 |
+
"normalized": false,
|
| 1729 |
+
"rstrip": false,
|
| 1730 |
+
"single_word": false,
|
| 1731 |
+
"special": false
|
| 1732 |
+
},
|
| 1733 |
+
"216": {
|
| 1734 |
+
"content": "</code>",
|
| 1735 |
+
"lstrip": false,
|
| 1736 |
+
"normalized": false,
|
| 1737 |
+
"rstrip": false,
|
| 1738 |
+
"single_word": false,
|
| 1739 |
+
"special": false
|
| 1740 |
+
},
|
| 1741 |
+
"255968": {
|
| 1742 |
+
"content": "[toxicity=0]",
|
| 1743 |
+
"lstrip": false,
|
| 1744 |
+
"normalized": false,
|
| 1745 |
+
"rstrip": false,
|
| 1746 |
+
"single_word": false,
|
| 1747 |
+
"special": false
|
| 1748 |
+
},
|
| 1749 |
+
"255969": {
|
| 1750 |
+
"content": "\t\t",
|
| 1751 |
+
"lstrip": false,
|
| 1752 |
+
"normalized": false,
|
| 1753 |
+
"rstrip": false,
|
| 1754 |
+
"single_word": false,
|
| 1755 |
+
"special": false
|
| 1756 |
+
},
|
| 1757 |
+
"255970": {
|
| 1758 |
+
"content": "\t\t\t",
|
| 1759 |
+
"lstrip": false,
|
| 1760 |
+
"normalized": false,
|
| 1761 |
+
"rstrip": false,
|
| 1762 |
+
"single_word": false,
|
| 1763 |
+
"special": false
|
| 1764 |
+
},
|
| 1765 |
+
"255971": {
|
| 1766 |
+
"content": "\t\t\t\t",
|
| 1767 |
+
"lstrip": false,
|
| 1768 |
+
"normalized": false,
|
| 1769 |
+
"rstrip": false,
|
| 1770 |
+
"single_word": false,
|
| 1771 |
+
"special": false
|
| 1772 |
+
},
|
| 1773 |
+
"255972": {
|
| 1774 |
+
"content": "\t\t\t\t\t",
|
| 1775 |
+
"lstrip": false,
|
| 1776 |
+
"normalized": false,
|
| 1777 |
+
"rstrip": false,
|
| 1778 |
+
"single_word": false,
|
| 1779 |
+
"special": false
|
| 1780 |
+
},
|
| 1781 |
+
"255973": {
|
| 1782 |
+
"content": "\t\t\t\t\t\t",
|
| 1783 |
+
"lstrip": false,
|
| 1784 |
+
"normalized": false,
|
| 1785 |
+
"rstrip": false,
|
| 1786 |
+
"single_word": false,
|
| 1787 |
+
"special": false
|
| 1788 |
+
},
|
| 1789 |
+
"255974": {
|
| 1790 |
+
"content": "\t\t\t\t\t\t\t",
|
| 1791 |
+
"lstrip": false,
|
| 1792 |
+
"normalized": false,
|
| 1793 |
+
"rstrip": false,
|
| 1794 |
+
"single_word": false,
|
| 1795 |
+
"special": false
|
| 1796 |
+
},
|
| 1797 |
+
"255975": {
|
| 1798 |
+
"content": "\t\t\t\t\t\t\t\t",
|
| 1799 |
+
"lstrip": false,
|
| 1800 |
+
"normalized": false,
|
| 1801 |
+
"rstrip": false,
|
| 1802 |
+
"single_word": false,
|
| 1803 |
+
"special": false
|
| 1804 |
+
},
|
| 1805 |
+
"255976": {
|
| 1806 |
+
"content": "\t\t\t\t\t\t\t\t\t",
|
| 1807 |
+
"lstrip": false,
|
| 1808 |
+
"normalized": false,
|
| 1809 |
+
"rstrip": false,
|
| 1810 |
+
"single_word": false,
|
| 1811 |
+
"special": false
|
| 1812 |
+
},
|
| 1813 |
+
"255977": {
|
| 1814 |
+
"content": "\t\t\t\t\t\t\t\t\t\t",
|
| 1815 |
+
"lstrip": false,
|
| 1816 |
+
"normalized": false,
|
| 1817 |
+
"rstrip": false,
|
| 1818 |
+
"single_word": false,
|
| 1819 |
+
"special": false
|
| 1820 |
+
},
|
| 1821 |
+
"255978": {
|
| 1822 |
+
"content": "\t\t\t\t\t\t\t\t\t\t\t",
|
| 1823 |
+
"lstrip": false,
|
| 1824 |
+
"normalized": false,
|
| 1825 |
+
"rstrip": false,
|
| 1826 |
+
"single_word": false,
|
| 1827 |
+
"special": false
|
| 1828 |
+
},
|
| 1829 |
+
"255979": {
|
| 1830 |
+
"content": "\t\t\t\t\t\t\t\t\t\t\t\t",
|
| 1831 |
+
"lstrip": false,
|
| 1832 |
+
"normalized": false,
|
| 1833 |
+
"rstrip": false,
|
| 1834 |
+
"single_word": false,
|
| 1835 |
+
"special": false
|
| 1836 |
+
},
|
| 1837 |
+
"255980": {
|
| 1838 |
+
"content": "\t\t\t\t\t\t\t\t\t\t\t\t\t",
|
| 1839 |
+
"lstrip": false,
|
| 1840 |
+
"normalized": false,
|
| 1841 |
+
"rstrip": false,
|
| 1842 |
+
"single_word": false,
|
| 1843 |
+
"special": false
|
| 1844 |
+
},
|
| 1845 |
+
"255981": {
|
| 1846 |
+
"content": "\t\t\t\t\t\t\t\t\t\t\t\t\t\t",
|
| 1847 |
+
"lstrip": false,
|
| 1848 |
+
"normalized": false,
|
| 1849 |
+
"rstrip": false,
|
| 1850 |
+
"single_word": false,
|
| 1851 |
+
"special": false
|
| 1852 |
+
},
|
| 1853 |
+
"255982": {
|
| 1854 |
+
"content": "\t\t\t\t\t\t\t\t\t\t\t\t\t\t\t",
|
| 1855 |
+
"lstrip": false,
|
| 1856 |
+
"normalized": false,
|
| 1857 |
+
"rstrip": false,
|
| 1858 |
+
"single_word": false,
|
| 1859 |
+
"special": false
|
| 1860 |
+
},
|
| 1861 |
+
"255983": {
|
| 1862 |
+
"content": "\t\t\t\t\t\t\t\t\t\t\t\t\t\t\t\t",
|
| 1863 |
+
"lstrip": false,
|
| 1864 |
+
"normalized": false,
|
| 1865 |
+
"rstrip": false,
|
| 1866 |
+
"single_word": false,
|
| 1867 |
+
"special": false
|
| 1868 |
+
},
|
| 1869 |
+
"255984": {
|
| 1870 |
+
"content": "\t\t\t\t\t\t\t\t\t\t\t\t\t\t\t\t\t",
|
| 1871 |
+
"lstrip": false,
|
| 1872 |
+
"normalized": false,
|
| 1873 |
+
"rstrip": false,
|
| 1874 |
+
"single_word": false,
|
| 1875 |
+
"special": false
|
| 1876 |
+
},
|
| 1877 |
+
"255985": {
|
| 1878 |
+
"content": "\t\t\t\t\t\t\t\t\t\t\t\t\t\t\t\t\t\t",
|
| 1879 |
+
"lstrip": false,
|
| 1880 |
+
"normalized": false,
|
| 1881 |
+
"rstrip": false,
|
| 1882 |
+
"single_word": false,
|
| 1883 |
+
"special": false
|
| 1884 |
+
},
|
| 1885 |
+
"255986": {
|
| 1886 |
+
"content": "\t\t\t\t\t\t\t\t\t\t\t\t\t\t\t\t\t\t\t",
|
| 1887 |
+
"lstrip": false,
|
| 1888 |
+
"normalized": false,
|
| 1889 |
+
"rstrip": false,
|
| 1890 |
+
"single_word": false,
|
| 1891 |
+
"special": false
|
| 1892 |
+
},
|
| 1893 |
+
"255987": {
|
| 1894 |
+
"content": "\t\t\t\t\t\t\t\t\t\t\t\t\t\t\t\t\t\t\t\t",
|
| 1895 |
+
"lstrip": false,
|
| 1896 |
+
"normalized": false,
|
| 1897 |
+
"rstrip": false,
|
| 1898 |
+
"single_word": false,
|
| 1899 |
+
"special": false
|
| 1900 |
+
},
|
| 1901 |
+
"255988": {
|
| 1902 |
+
"content": "\t\t\t\t\t\t\t\t\t\t\t\t\t\t\t\t\t\t\t\t\t",
|
| 1903 |
+
"lstrip": false,
|
| 1904 |
+
"normalized": false,
|
| 1905 |
+
"rstrip": false,
|
| 1906 |
+
"single_word": false,
|
| 1907 |
+
"special": false
|
| 1908 |
+
},
|
| 1909 |
+
"255989": {
|
| 1910 |
+
"content": "\t\t\t\t\t\t\t\t\t\t\t\t\t\t\t\t\t\t\t\t\t\t",
|
| 1911 |
+
"lstrip": false,
|
| 1912 |
+
"normalized": false,
|
| 1913 |
+
"rstrip": false,
|
| 1914 |
+
"single_word": false,
|
| 1915 |
+
"special": false
|
| 1916 |
+
},
|
| 1917 |
+
"255990": {
|
| 1918 |
+
"content": "\t\t\t\t\t\t\t\t\t\t\t\t\t\t\t\t\t\t\t\t\t\t\t",
|
| 1919 |
+
"lstrip": false,
|
| 1920 |
+
"normalized": false,
|
| 1921 |
+
"rstrip": false,
|
| 1922 |
+
"single_word": false,
|
| 1923 |
+
"special": false
|
| 1924 |
+
},
|
| 1925 |
+
"255991": {
|
| 1926 |
+
"content": "\t\t\t\t\t\t\t\t\t\t\t\t\t\t\t\t\t\t\t\t\t\t\t\t",
|
| 1927 |
+
"lstrip": false,
|
| 1928 |
+
"normalized": false,
|
| 1929 |
+
"rstrip": false,
|
| 1930 |
+
"single_word": false,
|
| 1931 |
+
"special": false
|
| 1932 |
+
},
|
| 1933 |
+
"255992": {
|
| 1934 |
+
"content": "\t\t\t\t\t\t\t\t\t\t\t\t\t\t\t\t\t\t\t\t\t\t\t\t\t",
|
| 1935 |
+
"lstrip": false,
|
| 1936 |
+
"normalized": false,
|
| 1937 |
+
"rstrip": false,
|
| 1938 |
+
"single_word": false,
|
| 1939 |
+
"special": false
|
| 1940 |
+
},
|
| 1941 |
+
"255993": {
|
| 1942 |
+
"content": "\t\t\t\t\t\t\t\t\t\t\t\t\t\t\t\t\t\t\t\t\t\t\t\t\t\t",
|
| 1943 |
+
"lstrip": false,
|
| 1944 |
+
"normalized": false,
|
| 1945 |
+
"rstrip": false,
|
| 1946 |
+
"single_word": false,
|
| 1947 |
+
"special": false
|
| 1948 |
+
},
|
| 1949 |
+
"255994": {
|
| 1950 |
+
"content": "\t\t\t\t\t\t\t\t\t\t\t\t\t\t\t\t\t\t\t\t\t\t\t\t\t\t\t",
|
| 1951 |
+
"lstrip": false,
|
| 1952 |
+
"normalized": false,
|
| 1953 |
+
"rstrip": false,
|
| 1954 |
+
"single_word": false,
|
| 1955 |
+
"special": false
|
| 1956 |
+
},
|
| 1957 |
+
"255995": {
|
| 1958 |
+
"content": "\t\t\t\t\t\t\t\t\t\t\t\t\t\t\t\t\t\t\t\t\t\t\t\t\t\t\t\t",
|
| 1959 |
+
"lstrip": false,
|
| 1960 |
+
"normalized": false,
|
| 1961 |
+
"rstrip": false,
|
| 1962 |
+
"single_word": false,
|
| 1963 |
+
"special": false
|
| 1964 |
+
},
|
| 1965 |
+
"255996": {
|
| 1966 |
+
"content": "\t\t\t\t\t\t\t\t\t\t\t\t\t\t\t\t\t\t\t\t\t\t\t\t\t\t\t\t\t",
|
| 1967 |
+
"lstrip": false,
|
| 1968 |
+
"normalized": false,
|
| 1969 |
+
"rstrip": false,
|
| 1970 |
+
"single_word": false,
|
| 1971 |
+
"special": false
|
| 1972 |
+
},
|
| 1973 |
+
"255997": {
|
| 1974 |
+
"content": "\t\t\t\t\t\t\t\t\t\t\t\t\t\t\t\t\t\t\t\t\t\t\t\t\t\t\t\t\t\t",
|
| 1975 |
+
"lstrip": false,
|
| 1976 |
+
"normalized": false,
|
| 1977 |
+
"rstrip": false,
|
| 1978 |
+
"single_word": false,
|
| 1979 |
+
"special": false
|
| 1980 |
+
},
|
| 1981 |
+
"255998": {
|
| 1982 |
+
"content": "\t\t\t\t\t\t\t\t\t\t\t\t\t\t\t\t\t\t\t\t\t\t\t\t\t\t\t\t\t\t\t",
|
| 1983 |
+
"lstrip": false,
|
| 1984 |
+
"normalized": false,
|
| 1985 |
+
"rstrip": false,
|
| 1986 |
+
"single_word": false,
|
| 1987 |
+
"special": false
|
| 1988 |
+
},
|
| 1989 |
+
"255999": {
|
| 1990 |
+
"content": "<unused99>",
|
| 1991 |
+
"lstrip": false,
|
| 1992 |
+
"normalized": false,
|
| 1993 |
+
"rstrip": false,
|
| 1994 |
+
"single_word": false,
|
| 1995 |
+
"special": false
|
| 1996 |
+
}
|
| 1997 |
+
},
|
| 1998 |
+
"bos_token": "<bos>",
|
| 1999 |
+
"chat_template": "{{ bos_token }}{% if messages[0]['role'] == 'system' %}{{ raise_exception('System role not supported') }}{% endif %}{% for message in messages %}{% if (message['role'] == 'user') != (loop.index0 % 2 == 0) %}{{ raise_exception('Conversation roles must alternate user/assistant/user/assistant/...') }}{% endif %}{% if (message['role'] == 'assistant') %}{% set role = 'model' %}{% else %}{% set role = message['role'] %}{% endif %}{{ '<start_of_turn>' + role + '\n' + message['content'] | trim + '<end_of_turn>\n' }}{% endfor %}{% if add_generation_prompt %}{{'<start_of_turn>model\n'}}{% endif %}",
|
| 2000 |
+
"clean_up_tokenization_spaces": false,
|
| 2001 |
+
"eos_token": "<eos>",
|
| 2002 |
+
"model_max_length": 1000000000000000019884624838656,
|
| 2003 |
+
"pad_token": "<pad>",
|
| 2004 |
+
"processor_class": "Florence2Processor",
|
| 2005 |
+
"sp_model_kwargs": {},
|
| 2006 |
+
"spaces_between_special_tokens": false,
|
| 2007 |
+
"tokenizer_class": "GemmaTokenizer",
|
| 2008 |
+
"unk_token": "<unk>",
|
| 2009 |
+
"use_default_system_prompt": false
|
| 2010 |
+
}
|