Delete benchmarks/DeepLoc
Browse files- benchmarks/DeepLoc/OG_membrane_type_all.csv +0 -3
- benchmarks/DeepLoc/cell_localization_predictor.py +0 -137
- benchmarks/DeepLoc/cell_localization_test.csv +0 -0
- benchmarks/DeepLoc/cell_localization_train_val.csv +0 -3
- benchmarks/DeepLoc/membrane_localization_predictor.py +0 -137
- benchmarks/DeepLoc/membrane_type_test.csv +0 -0
- benchmarks/DeepLoc/membrane_type_train.csv +0 -3
- benchmarks/DeepLoc/prep_deeploc_benchmark_data.ipynb +0 -488
benchmarks/DeepLoc/OG_membrane_type_all.csv
DELETED
|
@@ -1,3 +0,0 @@
|
|
| 1 |
-
version https://git-lfs.github.com/spec/v1
|
| 2 |
-
oid sha256:2d878da32a06092f880262048e3c1eb692721c274b0a458fcc712a0dcbd80c71
|
| 3 |
-
size 15683507
|
|
|
|
|
|
|
|
|
|
|
|
benchmarks/DeepLoc/cell_localization_predictor.py
DELETED
|
@@ -1,137 +0,0 @@
|
|
| 1 |
-
import torch
|
| 2 |
-
import torch.nn as nn
|
| 3 |
-
import torch.optim as optim
|
| 4 |
-
from torch.utils.data import DataLoader, Dataset
|
| 5 |
-
from sklearn.metrics import accuracy_score, precision_score, recall_score, f1_score, roc_auc_score
|
| 6 |
-
|
| 7 |
-
from tqdm import tqdm
|
| 8 |
-
from datetime import datetime
|
| 9 |
-
import pandas as pd
|
| 10 |
-
import numpy as np
|
| 11 |
-
import pickle
|
| 12 |
-
import os
|
| 13 |
-
|
| 14 |
-
# Hyperparameters dictionary
|
| 15 |
-
path = "/home/a03-sgoel/MDpLM"
|
| 16 |
-
|
| 17 |
-
hyperparams = {
|
| 18 |
-
"batch_size": 1,
|
| 19 |
-
"learning_rate": 4e-5,
|
| 20 |
-
"num_epochs": 5,
|
| 21 |
-
"max_length": 2000,
|
| 22 |
-
"train_data": path + "/benchmarks/DeepLoc/cell_localization_train_val.csv.csv",
|
| 23 |
-
"test_data" : path + "/benchmarks/DeepLoc/cell_localization_test.csv",
|
| 24 |
-
"val_data": "", # None
|
| 25 |
-
"embeddings_pkl": "", # Need to generate ESM embeddings and save as pkl file
|
| 26 |
-
}
|
| 27 |
-
|
| 28 |
-
# Dataset class can load pickle file
|
| 29 |
-
class LocalizationDataset(Dataset):
|
| 30 |
-
def __init__(self, csv_file, embeddings_pkl, max_length=2000):
|
| 31 |
-
self.data = pd.read_csv(csv_file)
|
| 32 |
-
self.max_length = max_length
|
| 33 |
-
|
| 34 |
-
# Map sequences to embeddings
|
| 35 |
-
with open(embeddings_pkl, 'rb') as f:
|
| 36 |
-
self.embeddings_dict = pickle.load(f)
|
| 37 |
-
self.data['embedding'] = self.data['Sequence'].map(self.embeddings_dict)
|
| 38 |
-
|
| 39 |
-
# Ensure sequences and embeddings are of the same length
|
| 40 |
-
assert len(self.data) == len(self.data['embedding']), "CSV data and embeddings length mismatch"
|
| 41 |
-
|
| 42 |
-
# Create multi-class label list
|
| 43 |
-
self.data['label'] = self.data.iloc[:, 1:9].value.tolist()
|
| 44 |
-
|
| 45 |
-
def __len__(self):
|
| 46 |
-
return len(self.data)
|
| 47 |
-
|
| 48 |
-
def __getitem__(self, idx):
|
| 49 |
-
embeddings = torch.tensor(self.data['embedding'][idx], dtype=torch.float)
|
| 50 |
-
labels = torch.tensor(self.data['label'][idx], dtype=torch.long)
|
| 51 |
-
|
| 52 |
-
return embeddings, labels
|
| 53 |
-
|
| 54 |
-
# Multi-class localization predictor
|
| 55 |
-
class LocalizationPredictor(nn.Module):
|
| 56 |
-
def __init__(self, input_dim, num_classes):
|
| 57 |
-
super(LocalizationPredictor, self).__init__()
|
| 58 |
-
self.classifier = nn.Linear(input_dim, num_classes) # 1280 x 8
|
| 59 |
-
|
| 60 |
-
def forward(self, embeddings):
|
| 61 |
-
avg_embedding = torch.mean(embeddings, dim=0) # Average embedding dimension: 1280
|
| 62 |
-
logits = self.classifier(avg_embedding)
|
| 63 |
-
return logits # pass logits of dimension 1x8 (8-class distribution) to CE loss
|
| 64 |
-
|
| 65 |
-
# Training function
|
| 66 |
-
def train(model, dataloader, optimizer, criterion, device):
|
| 67 |
-
model.train()
|
| 68 |
-
total_loss = 0
|
| 69 |
-
for embeddings, labels in tqdm(dataloader):
|
| 70 |
-
embeddings, labels = embeddings.to(device), labels.to(device)
|
| 71 |
-
optimizer.zero_grad()
|
| 72 |
-
outputs = model(embeddings)
|
| 73 |
-
loss = criterion(outputs, labels)
|
| 74 |
-
loss.backward()
|
| 75 |
-
optimizer.step()
|
| 76 |
-
total_loss += loss.item()
|
| 77 |
-
return total_loss / len(dataloader)
|
| 78 |
-
|
| 79 |
-
# Evaluation function
|
| 80 |
-
def evaluate(model, dataloader, device):
|
| 81 |
-
model.eval()
|
| 82 |
-
preds, true_labels = [], []
|
| 83 |
-
with torch.no_grad():
|
| 84 |
-
for embeddings, labels in tqdm(dataloader):
|
| 85 |
-
embeddings, labels = embeddings.to(device), labels.to(device)
|
| 86 |
-
outputs = model(embeddings)
|
| 87 |
-
preds.append(outputs.cpu().numpy())
|
| 88 |
-
true_labels.append(labels.cpu().numpy())
|
| 89 |
-
return preds, true_labels
|
| 90 |
-
|
| 91 |
-
# Metrics calculation
|
| 92 |
-
def calculate_metrics(preds, labels, threshold=0.5):
|
| 93 |
-
flat_binary_preds, flat_labels = [], []
|
| 94 |
-
|
| 95 |
-
for pred, label in zip(preds, labels):
|
| 96 |
-
flat_binary_preds.extend((pred > threshold).astype(int).flatten())
|
| 97 |
-
flat_labels.extend(label.flatten())
|
| 98 |
-
|
| 99 |
-
flat_binary_preds = np.array(flat_binary_preds)
|
| 100 |
-
flat_labels = np.array(flat_labels)
|
| 101 |
-
|
| 102 |
-
accuracy = accuracy_score(flat_labels, flat_binary_preds)
|
| 103 |
-
precision = precision_score(flat_labels, flat_binary_preds, average='macro')
|
| 104 |
-
recall = recall_score(flat_labels, flat_binary_preds, average='macro')
|
| 105 |
-
f1 = f1_score(flat_labels, flat_binary_preds, average='macro')
|
| 106 |
-
|
| 107 |
-
return accuracy, precision, recall, f1
|
| 108 |
-
|
| 109 |
-
|
| 110 |
-
device = torch.device("cuda" if torch.cuda.is_available() else "cpu")
|
| 111 |
-
|
| 112 |
-
train_dataset = LocalizationDataset(hyperparams["train_data"], hyperparams["embeddings_pkl"], max_length=hyperparams["max_length"])
|
| 113 |
-
test_dataset = LocalizationDataset(hyperparams["test_data"], hyperparams["embeddings_pkl"], max_length=hyperparams["max_length"])
|
| 114 |
-
|
| 115 |
-
train_dataloader = DataLoader(train_dataset, batch_size=hyperparams["batch_size"], shuffle=True)
|
| 116 |
-
test_dataloader = DataLoader(test_dataset, batch_size=hyperparams["batch_size"], shuffle=False)
|
| 117 |
-
|
| 118 |
-
model = LocalizationPredictor(input_dim=1280, num_classes=8).to(device)
|
| 119 |
-
optimizer = optim.Adam(model.parameters(), lr=hyperparams["learning_rate"])
|
| 120 |
-
criterion = nn.CrossEntropyLoss()
|
| 121 |
-
|
| 122 |
-
# Train the model
|
| 123 |
-
for epoch in range(hyperparams["num_epochs"]):
|
| 124 |
-
train_loss = train(model, train_dataloader, optimizer, criterion, device)
|
| 125 |
-
print(f"EPOCH {epoch+1}/{hyperparams['num_epochs']}")
|
| 126 |
-
print(f"TRAIN LOSS: {train_loss:.4f}")
|
| 127 |
-
print("\n")
|
| 128 |
-
|
| 129 |
-
# Evaluate model on test dataset
|
| 130 |
-
print("Test set")
|
| 131 |
-
test_preds, test_labels = evaluate(model, test_dataloader, device)
|
| 132 |
-
test_metrics = calculate_metrics(test_preds, test_labels)
|
| 133 |
-
print("TEST METRICS:")
|
| 134 |
-
print(f"Accuracy: {test_metrics[0]:.4f}")
|
| 135 |
-
print(f"Precision: {test_metrics[1]:.4f}")
|
| 136 |
-
print(f"Recall: {test_metrics[2]:.4f}")
|
| 137 |
-
print(f"F1 Score: {test_metrics[3]:.4f}")
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
benchmarks/DeepLoc/cell_localization_test.csv
DELETED
|
The diff for this file is too large to render.
See raw diff
|
|
|
benchmarks/DeepLoc/cell_localization_train_val.csv
DELETED
|
@@ -1,3 +0,0 @@
|
|
| 1 |
-
version https://git-lfs.github.com/spec/v1
|
| 2 |
-
oid sha256:29a07b293fed2994a966b70bdcd6bacc59915b8b01fa200cb2b07d8db18384a2
|
| 3 |
-
size 17724293
|
|
|
|
|
|
|
|
|
|
|
|
benchmarks/DeepLoc/membrane_localization_predictor.py
DELETED
|
@@ -1,137 +0,0 @@
|
|
| 1 |
-
import torch
|
| 2 |
-
import torch.nn as nn
|
| 3 |
-
import torch.optim as optim
|
| 4 |
-
from torch.utils.data import DataLoader, Dataset
|
| 5 |
-
from sklearn.metrics import accuracy_score, precision_score, recall_score, f1_score, roc_auc_score
|
| 6 |
-
|
| 7 |
-
from tqdm import tqdm
|
| 8 |
-
from datetime import datetime
|
| 9 |
-
import pandas as pd
|
| 10 |
-
import numpy as np
|
| 11 |
-
import pickle
|
| 12 |
-
import os
|
| 13 |
-
|
| 14 |
-
# Hyperparameters dictionary
|
| 15 |
-
path = "/home/a03-sgoel/MDpLM"
|
| 16 |
-
|
| 17 |
-
hyperparams = {
|
| 18 |
-
"batch_size": 1,
|
| 19 |
-
"learning_rate": 4e-5,
|
| 20 |
-
"num_epochs": 5,
|
| 21 |
-
"max_length": 2000,
|
| 22 |
-
"train_data": path + "/benchmarks/membrane_type_train.csv",
|
| 23 |
-
"test_data" : path + "/benchmarks/membrane_type_test.csv",
|
| 24 |
-
"val_data": "", # none
|
| 25 |
-
"embeddings_pkl": "" # Need to generate ESM embeddings
|
| 26 |
-
}
|
| 27 |
-
|
| 28 |
-
# Dataset class can load pickle file
|
| 29 |
-
class LocalizationDataset(Dataset):
|
| 30 |
-
def __init__(self, csv_file, embeddings_pkl, max_length=2000):
|
| 31 |
-
self.data = pd.read_csv(csv_file)
|
| 32 |
-
self.max_length = max_length
|
| 33 |
-
|
| 34 |
-
# Map sequences to embeddings
|
| 35 |
-
with open(embeddings_pkl, 'rb') as f:
|
| 36 |
-
self.embeddings_dict = pickle.load(f)
|
| 37 |
-
self.data['embedding'] = self.data['Sequence'].map(self.embeddings_dict)
|
| 38 |
-
|
| 39 |
-
# Ensure sequences and embeddings are of the same length
|
| 40 |
-
assert len(self.data) == len(self.data['embedding']), "CSV data and embeddings length mismatch"
|
| 41 |
-
|
| 42 |
-
# Create multi-class label list
|
| 43 |
-
self.data['label'] = self.data.iloc[:, 2:7].value.tolist()
|
| 44 |
-
|
| 45 |
-
def __len__(self):
|
| 46 |
-
return len(self.data)
|
| 47 |
-
|
| 48 |
-
def __getitem__(self, idx):
|
| 49 |
-
embeddings = torch.tensor(self.data['embedding'][idx], dtype=torch.float)
|
| 50 |
-
labels = torch.tensor(self.data['label'][idx], dtype=torch.long)
|
| 51 |
-
|
| 52 |
-
return embeddings, labels
|
| 53 |
-
|
| 54 |
-
# Multi-class localization predictor
|
| 55 |
-
class LocalizationPredictor(nn.Module):
|
| 56 |
-
def __init__(self, input_dim, num_classes):
|
| 57 |
-
super(LocalizationPredictor, self).__init__()
|
| 58 |
-
self.classifier = nn.Linear(input_dim, num_classes) # 1280 x 4
|
| 59 |
-
|
| 60 |
-
def forward(self, embeddings):
|
| 61 |
-
avg_embedding = torch.mean(embeddings, dim=0) # Average embedding dimension: 1280
|
| 62 |
-
logits = self.classifier(avg_embedding)
|
| 63 |
-
return logits # pass logits of dimension 1x4 (4-class distribution) to CE loss
|
| 64 |
-
|
| 65 |
-
# Training function
|
| 66 |
-
def train(model, dataloader, optimizer, criterion, device):
|
| 67 |
-
model.train()
|
| 68 |
-
total_loss = 0
|
| 69 |
-
for embeddings, labels in tqdm(dataloader):
|
| 70 |
-
embeddings, labels = embeddings.to(device), labels.to(device)
|
| 71 |
-
optimizer.zero_grad()
|
| 72 |
-
outputs = model(embeddings)
|
| 73 |
-
loss = criterion(outputs, labels)
|
| 74 |
-
loss.backward()
|
| 75 |
-
optimizer.step()
|
| 76 |
-
total_loss += loss.item()
|
| 77 |
-
return total_loss / len(dataloader)
|
| 78 |
-
|
| 79 |
-
# Evaluation function
|
| 80 |
-
def evaluate(model, dataloader, device):
|
| 81 |
-
model.eval()
|
| 82 |
-
preds, true_labels = [], []
|
| 83 |
-
with torch.no_grad():
|
| 84 |
-
for embeddings, labels in tqdm(dataloader):
|
| 85 |
-
embeddings, labels = embeddings.to(device), labels.to(device)
|
| 86 |
-
outputs = model(embeddings)
|
| 87 |
-
preds.append(outputs.cpu().numpy())
|
| 88 |
-
true_labels.append(labels.cpu().numpy())
|
| 89 |
-
return preds, true_labels
|
| 90 |
-
|
| 91 |
-
# Metrics calculation
|
| 92 |
-
def calculate_metrics(preds, labels, threshold=0.5):
|
| 93 |
-
flat_binary_preds, flat_labels = [], []
|
| 94 |
-
|
| 95 |
-
for pred, label in zip(preds, labels):
|
| 96 |
-
flat_binary_preds.extend((pred > threshold).astype(int).flatten())
|
| 97 |
-
flat_labels.extend(label.flatten())
|
| 98 |
-
|
| 99 |
-
flat_binary_preds = np.array(flat_binary_preds)
|
| 100 |
-
flat_labels = np.array(flat_labels)
|
| 101 |
-
|
| 102 |
-
accuracy = accuracy_score(flat_labels, flat_binary_preds)
|
| 103 |
-
precision = precision_score(flat_labels, flat_binary_preds, average='macro')
|
| 104 |
-
recall = recall_score(flat_labels, flat_binary_preds, average='macro')
|
| 105 |
-
f1 = f1_score(flat_labels, flat_binary_preds, average='macro')
|
| 106 |
-
|
| 107 |
-
return accuracy, precision, recall, f1
|
| 108 |
-
|
| 109 |
-
|
| 110 |
-
device = torch.device("cuda" if torch.cuda.is_available() else "cpu")
|
| 111 |
-
|
| 112 |
-
train_dataset = LocalizationDataset(hyperparams["train_data"], hyperparams["embeddings_pkl"], max_length=hyperparams["max_length"])
|
| 113 |
-
test_dataset = LocalizationDataset(hyperparams["test_data"], hyperparams["embeddings_pkl"], max_length=hyperparams["max_length"])
|
| 114 |
-
|
| 115 |
-
train_dataloader = DataLoader(train_dataset, batch_size=hyperparams["batch_size"], shuffle=True)
|
| 116 |
-
test_dataloader = DataLoader(test_dataset, batch_size=hyperparams["batch_size"], shuffle=False)
|
| 117 |
-
|
| 118 |
-
model = LocalizationPredictor(input_dim=1280, num_classes=4).to(device)
|
| 119 |
-
optimizer = optim.Adam(model.parameters(), lr=hyperparams["learning_rate"])
|
| 120 |
-
criterion = nn.CrossEntropyLoss()
|
| 121 |
-
|
| 122 |
-
# Train the model
|
| 123 |
-
for epoch in range(hyperparams["num_epochs"]):
|
| 124 |
-
train_loss = train(model, train_dataloader, optimizer, criterion, device)
|
| 125 |
-
print(f"EPOCH {epoch+1}/{hyperparams['num_epochs']}")
|
| 126 |
-
print(f"TRAIN LOSS: {train_loss:.4f}")
|
| 127 |
-
print("\n")
|
| 128 |
-
|
| 129 |
-
# Evaluate model on test dataset
|
| 130 |
-
print("Test set")
|
| 131 |
-
test_preds, test_labels = evaluate(model, test_dataloader, device)
|
| 132 |
-
test_metrics = calculate_metrics(test_preds, test_labels)
|
| 133 |
-
print("TEST METRICS:")
|
| 134 |
-
print(f"Accuracy: {test_metrics[0]:.4f}")
|
| 135 |
-
print(f"Precision: {test_metrics[1]:.4f}")
|
| 136 |
-
print(f"Recall: {test_metrics[2]:.4f}")
|
| 137 |
-
print(f"F1 Score: {test_metrics[3]:.4f}")
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
benchmarks/DeepLoc/membrane_type_test.csv
DELETED
|
The diff for this file is too large to render.
See raw diff
|
|
|
benchmarks/DeepLoc/membrane_type_train.csv
DELETED
|
@@ -1,3 +0,0 @@
|
|
| 1 |
-
version https://git-lfs.github.com/spec/v1
|
| 2 |
-
oid sha256:16b8eec677afa2de578d04ee1a0fc9582b2f8cfc47622cbd6374309cd6ab96f3
|
| 3 |
-
size 12335695
|
|
|
|
|
|
|
|
|
|
|
|
benchmarks/DeepLoc/prep_deeploc_benchmark_data.ipynb
DELETED
|
@@ -1,488 +0,0 @@
|
|
| 1 |
-
{
|
| 2 |
-
"cells": [
|
| 3 |
-
{
|
| 4 |
-
"cell_type": "code",
|
| 5 |
-
"execution_count": 3,
|
| 6 |
-
"metadata": {},
|
| 7 |
-
"outputs": [],
|
| 8 |
-
"source": [
|
| 9 |
-
"import pandas as pd"
|
| 10 |
-
]
|
| 11 |
-
},
|
| 12 |
-
{
|
| 13 |
-
"cell_type": "code",
|
| 14 |
-
"execution_count": 1,
|
| 15 |
-
"metadata": {},
|
| 16 |
-
"outputs": [],
|
| 17 |
-
"source": [
|
| 18 |
-
"path = \"/home/a03-sgoel/mESMerize/benchmarks/DeepLoc\""
|
| 19 |
-
]
|
| 20 |
-
},
|
| 21 |
-
{
|
| 22 |
-
"cell_type": "code",
|
| 23 |
-
"execution_count": 7,
|
| 24 |
-
"metadata": {},
|
| 25 |
-
"outputs": [
|
| 26 |
-
{
|
| 27 |
-
"data": {
|
| 28 |
-
"text/html": [
|
| 29 |
-
"<div>\n",
|
| 30 |
-
"<style scoped>\n",
|
| 31 |
-
" .dataframe tbody tr th:only-of-type {\n",
|
| 32 |
-
" vertical-align: middle;\n",
|
| 33 |
-
" }\n",
|
| 34 |
-
"\n",
|
| 35 |
-
" .dataframe tbody tr th {\n",
|
| 36 |
-
" vertical-align: top;\n",
|
| 37 |
-
" }\n",
|
| 38 |
-
"\n",
|
| 39 |
-
" .dataframe thead th {\n",
|
| 40 |
-
" text-align: right;\n",
|
| 41 |
-
" }\n",
|
| 42 |
-
"</style>\n",
|
| 43 |
-
"<table border=\"1\" class=\"dataframe\">\n",
|
| 44 |
-
" <thead>\n",
|
| 45 |
-
" <tr style=\"text-align: right;\">\n",
|
| 46 |
-
" <th></th>\n",
|
| 47 |
-
" <th>Unnamed: 0</th>\n",
|
| 48 |
-
" <th>ACC</th>\n",
|
| 49 |
-
" <th>Kingdom</th>\n",
|
| 50 |
-
" <th>Partition</th>\n",
|
| 51 |
-
" <th>Peripheral</th>\n",
|
| 52 |
-
" <th>Transmembrane</th>\n",
|
| 53 |
-
" <th>LipidAnchor</th>\n",
|
| 54 |
-
" <th>Soluble</th>\n",
|
| 55 |
-
" <th>Sequence</th>\n",
|
| 56 |
-
" </tr>\n",
|
| 57 |
-
" </thead>\n",
|
| 58 |
-
" <tbody>\n",
|
| 59 |
-
" <tr>\n",
|
| 60 |
-
" <th>0</th>\n",
|
| 61 |
-
" <td>0</td>\n",
|
| 62 |
-
" <td>I3R9M8</td>\n",
|
| 63 |
-
" <td>Archaea</td>\n",
|
| 64 |
-
" <td>0</td>\n",
|
| 65 |
-
" <td>1</td>\n",
|
| 66 |
-
" <td>0</td>\n",
|
| 67 |
-
" <td>0</td>\n",
|
| 68 |
-
" <td>0</td>\n",
|
| 69 |
-
" <td>MSTDSDAETVDLADGVDHQVAMVMDLNKCIGCQTCTVACKSLWTEG...</td>\n",
|
| 70 |
-
" </tr>\n",
|
| 71 |
-
" <tr>\n",
|
| 72 |
-
" <th>1</th>\n",
|
| 73 |
-
" <td>1</td>\n",
|
| 74 |
-
" <td>I3R9M9</td>\n",
|
| 75 |
-
" <td>Archaea</td>\n",
|
| 76 |
-
" <td>1</td>\n",
|
| 77 |
-
" <td>1</td>\n",
|
| 78 |
-
" <td>0</td>\n",
|
| 79 |
-
" <td>0</td>\n",
|
| 80 |
-
" <td>0</td>\n",
|
| 81 |
-
" <td>MSRNDASQLDDGETTAESPPDDQANDAPEVGDPPGDPVDADSGVSR...</td>\n",
|
| 82 |
-
" </tr>\n",
|
| 83 |
-
" <tr>\n",
|
| 84 |
-
" <th>2</th>\n",
|
| 85 |
-
" <td>2</td>\n",
|
| 86 |
-
" <td>Q7ZAG8</td>\n",
|
| 87 |
-
" <td>Archaea</td>\n",
|
| 88 |
-
" <td>2</td>\n",
|
| 89 |
-
" <td>1</td>\n",
|
| 90 |
-
" <td>0</td>\n",
|
| 91 |
-
" <td>0</td>\n",
|
| 92 |
-
" <td>0</td>\n",
|
| 93 |
-
" <td>MTKVLVLGGRFGALTAAYTLKRLVGSKADVKVINKSRFSYFRPALP...</td>\n",
|
| 94 |
-
" </tr>\n",
|
| 95 |
-
" <tr>\n",
|
| 96 |
-
" <th>3</th>\n",
|
| 97 |
-
" <td>3</td>\n",
|
| 98 |
-
" <td>Q8PZ67</td>\n",
|
| 99 |
-
" <td>Archaea</td>\n",
|
| 100 |
-
" <td>0</td>\n",
|
| 101 |
-
" <td>1</td>\n",
|
| 102 |
-
" <td>0</td>\n",
|
| 103 |
-
" <td>0</td>\n",
|
| 104 |
-
" <td>1</td>\n",
|
| 105 |
-
" <td>MPPKIAEVIQHDVCAACGACEAVCPIGAVTVKKAAEIRDPNDLSLY...</td>\n",
|
| 106 |
-
" </tr>\n",
|
| 107 |
-
" <tr>\n",
|
| 108 |
-
" <th>4</th>\n",
|
| 109 |
-
" <td>4</td>\n",
|
| 110 |
-
" <td>Q9YGA6</td>\n",
|
| 111 |
-
" <td>Archaea</td>\n",
|
| 112 |
-
" <td>0</td>\n",
|
| 113 |
-
" <td>1</td>\n",
|
| 114 |
-
" <td>0</td>\n",
|
| 115 |
-
" <td>0</td>\n",
|
| 116 |
-
" <td>0</td>\n",
|
| 117 |
-
" <td>MAGVRLVDVWKVFGEVTAVREMSLEVKDGEFMILLGPSGCGKTTTL...</td>\n",
|
| 118 |
-
" </tr>\n",
|
| 119 |
-
" <tr>\n",
|
| 120 |
-
" <th>...</th>\n",
|
| 121 |
-
" <td>...</td>\n",
|
| 122 |
-
" <td>...</td>\n",
|
| 123 |
-
" <td>...</td>\n",
|
| 124 |
-
" <td>...</td>\n",
|
| 125 |
-
" <td>...</td>\n",
|
| 126 |
-
" <td>...</td>\n",
|
| 127 |
-
" <td>...</td>\n",
|
| 128 |
-
" <td>...</td>\n",
|
| 129 |
-
" <td>...</td>\n",
|
| 130 |
-
" </tr>\n",
|
| 131 |
-
" <tr>\n",
|
| 132 |
-
" <th>28021</th>\n",
|
| 133 |
-
" <td>28021</td>\n",
|
| 134 |
-
" <td>P86949</td>\n",
|
| 135 |
-
" <td>Eukaryota</td>\n",
|
| 136 |
-
" <td>0</td>\n",
|
| 137 |
-
" <td>0</td>\n",
|
| 138 |
-
" <td>0</td>\n",
|
| 139 |
-
" <td>0</td>\n",
|
| 140 |
-
" <td>1</td>\n",
|
| 141 |
-
" <td>MLRFIAIVALIATVNAKGGTYGIGVLPSVTYVSGGGGGYPGIYGTY...</td>\n",
|
| 142 |
-
" </tr>\n",
|
| 143 |
-
" <tr>\n",
|
| 144 |
-
" <th>28022</th>\n",
|
| 145 |
-
" <td>28022</td>\n",
|
| 146 |
-
" <td>P86950</td>\n",
|
| 147 |
-
" <td>Eukaryota</td>\n",
|
| 148 |
-
" <td>0</td>\n",
|
| 149 |
-
" <td>0</td>\n",
|
| 150 |
-
" <td>0</td>\n",
|
| 151 |
-
" <td>0</td>\n",
|
| 152 |
-
" <td>1</td>\n",
|
| 153 |
-
" <td>MKPFISLASLIVLIASASAGGDDDYGKYGYGSYGPGIGGIGGGGGG...</td>\n",
|
| 154 |
-
" </tr>\n",
|
| 155 |
-
" <tr>\n",
|
| 156 |
-
" <th>28023</th>\n",
|
| 157 |
-
" <td>28023</td>\n",
|
| 158 |
-
" <td>P86951</td>\n",
|
| 159 |
-
" <td>Eukaryota</td>\n",
|
| 160 |
-
" <td>0</td>\n",
|
| 161 |
-
" <td>0</td>\n",
|
| 162 |
-
" <td>0</td>\n",
|
| 163 |
-
" <td>0</td>\n",
|
| 164 |
-
" <td>1</td>\n",
|
| 165 |
-
" <td>MLKLVCAVVLIATVNAKGSSPGFGIGQLPGITVVSGGVSGGSLSGG...</td>\n",
|
| 166 |
-
" </tr>\n",
|
| 167 |
-
" <tr>\n",
|
| 168 |
-
" <th>28024</th>\n",
|
| 169 |
-
" <td>28024</td>\n",
|
| 170 |
-
" <td>P86983</td>\n",
|
| 171 |
-
" <td>Eukaryota</td>\n",
|
| 172 |
-
" <td>3</td>\n",
|
| 173 |
-
" <td>0</td>\n",
|
| 174 |
-
" <td>0</td>\n",
|
| 175 |
-
" <td>0</td>\n",
|
| 176 |
-
" <td>1</td>\n",
|
| 177 |
-
" <td>MHQSSLGVLVLFSLIYLCISVHVPFDLNGWKALRLDNNRVQDSTNL...</td>\n",
|
| 178 |
-
" </tr>\n",
|
| 179 |
-
" <tr>\n",
|
| 180 |
-
" <th>28025</th>\n",
|
| 181 |
-
" <td>28025</td>\n",
|
| 182 |
-
" <td>P86984</td>\n",
|
| 183 |
-
" <td>Eukaryota</td>\n",
|
| 184 |
-
" <td>4</td>\n",
|
| 185 |
-
" <td>0</td>\n",
|
| 186 |
-
" <td>0</td>\n",
|
| 187 |
-
" <td>0</td>\n",
|
| 188 |
-
" <td>1</td>\n",
|
| 189 |
-
" <td>MLMLLCIIATVIPFSLVEGRKGCWADPTPPGKECLYGKEIHGGRNL...</td>\n",
|
| 190 |
-
" </tr>\n",
|
| 191 |
-
" </tbody>\n",
|
| 192 |
-
"</table>\n",
|
| 193 |
-
"<p>28026 rows × 9 columns</p>\n",
|
| 194 |
-
"</div>"
|
| 195 |
-
],
|
| 196 |
-
"text/plain": [
|
| 197 |
-
" Unnamed: 0 ACC Kingdom Partition Peripheral Transmembrane \\\n",
|
| 198 |
-
"0 0 I3R9M8 Archaea 0 1 0 \n",
|
| 199 |
-
"1 1 I3R9M9 Archaea 1 1 0 \n",
|
| 200 |
-
"2 2 Q7ZAG8 Archaea 2 1 0 \n",
|
| 201 |
-
"3 3 Q8PZ67 Archaea 0 1 0 \n",
|
| 202 |
-
"4 4 Q9YGA6 Archaea 0 1 0 \n",
|
| 203 |
-
"... ... ... ... ... ... ... \n",
|
| 204 |
-
"28021 28021 P86949 Eukaryota 0 0 0 \n",
|
| 205 |
-
"28022 28022 P86950 Eukaryota 0 0 0 \n",
|
| 206 |
-
"28023 28023 P86951 Eukaryota 0 0 0 \n",
|
| 207 |
-
"28024 28024 P86983 Eukaryota 3 0 0 \n",
|
| 208 |
-
"28025 28025 P86984 Eukaryota 4 0 0 \n",
|
| 209 |
-
"\n",
|
| 210 |
-
" LipidAnchor Soluble Sequence \n",
|
| 211 |
-
"0 0 0 MSTDSDAETVDLADGVDHQVAMVMDLNKCIGCQTCTVACKSLWTEG... \n",
|
| 212 |
-
"1 0 0 MSRNDASQLDDGETTAESPPDDQANDAPEVGDPPGDPVDADSGVSR... \n",
|
| 213 |
-
"2 0 0 MTKVLVLGGRFGALTAAYTLKRLVGSKADVKVINKSRFSYFRPALP... \n",
|
| 214 |
-
"3 0 1 MPPKIAEVIQHDVCAACGACEAVCPIGAVTVKKAAEIRDPNDLSLY... \n",
|
| 215 |
-
"4 0 0 MAGVRLVDVWKVFGEVTAVREMSLEVKDGEFMILLGPSGCGKTTTL... \n",
|
| 216 |
-
"... ... ... ... \n",
|
| 217 |
-
"28021 0 1 MLRFIAIVALIATVNAKGGTYGIGVLPSVTYVSGGGGGYPGIYGTY... \n",
|
| 218 |
-
"28022 0 1 MKPFISLASLIVLIASASAGGDDDYGKYGYGSYGPGIGGIGGGGGG... \n",
|
| 219 |
-
"28023 0 1 MLKLVCAVVLIATVNAKGSSPGFGIGQLPGITVVSGGVSGGSLSGG... \n",
|
| 220 |
-
"28024 0 1 MHQSSLGVLVLFSLIYLCISVHVPFDLNGWKALRLDNNRVQDSTNL... \n",
|
| 221 |
-
"28025 0 1 MLMLLCIIATVIPFSLVEGRKGCWADPTPPGKECLYGKEIHGGRNL... \n",
|
| 222 |
-
"\n",
|
| 223 |
-
"[28026 rows x 9 columns]"
|
| 224 |
-
]
|
| 225 |
-
},
|
| 226 |
-
"execution_count": 7,
|
| 227 |
-
"metadata": {},
|
| 228 |
-
"output_type": "execute_result"
|
| 229 |
-
}
|
| 230 |
-
],
|
| 231 |
-
"source": [
|
| 232 |
-
"df"
|
| 233 |
-
]
|
| 234 |
-
},
|
| 235 |
-
{
|
| 236 |
-
"cell_type": "code",
|
| 237 |
-
"execution_count": 9,
|
| 238 |
-
"metadata": {},
|
| 239 |
-
"outputs": [
|
| 240 |
-
{
|
| 241 |
-
"data": {
|
| 242 |
-
"text/html": [
|
| 243 |
-
"<div>\n",
|
| 244 |
-
"<style scoped>\n",
|
| 245 |
-
" .dataframe tbody tr th:only-of-type {\n",
|
| 246 |
-
" vertical-align: middle;\n",
|
| 247 |
-
" }\n",
|
| 248 |
-
"\n",
|
| 249 |
-
" .dataframe tbody tr th {\n",
|
| 250 |
-
" vertical-align: top;\n",
|
| 251 |
-
" }\n",
|
| 252 |
-
"\n",
|
| 253 |
-
" .dataframe thead th {\n",
|
| 254 |
-
" text-align: right;\n",
|
| 255 |
-
" }\n",
|
| 256 |
-
"</style>\n",
|
| 257 |
-
"<table border=\"1\" class=\"dataframe\">\n",
|
| 258 |
-
" <thead>\n",
|
| 259 |
-
" <tr style=\"text-align: right;\">\n",
|
| 260 |
-
" <th></th>\n",
|
| 261 |
-
" <th>ACC</th>\n",
|
| 262 |
-
" <th>Kingdom</th>\n",
|
| 263 |
-
" <th>Partition</th>\n",
|
| 264 |
-
" <th>Peripheral</th>\n",
|
| 265 |
-
" <th>Transmembrane</th>\n",
|
| 266 |
-
" <th>LipidAnchor</th>\n",
|
| 267 |
-
" <th>Soluble</th>\n",
|
| 268 |
-
" <th>Sequence</th>\n",
|
| 269 |
-
" </tr>\n",
|
| 270 |
-
" </thead>\n",
|
| 271 |
-
" <tbody>\n",
|
| 272 |
-
" <tr>\n",
|
| 273 |
-
" <th>0</th>\n",
|
| 274 |
-
" <td>I3R9M8</td>\n",
|
| 275 |
-
" <td>Archaea</td>\n",
|
| 276 |
-
" <td>0</td>\n",
|
| 277 |
-
" <td>1</td>\n",
|
| 278 |
-
" <td>0</td>\n",
|
| 279 |
-
" <td>0</td>\n",
|
| 280 |
-
" <td>0</td>\n",
|
| 281 |
-
" <td>MSTDSDAETVDLADGVDHQVAMVMDLNKCIGCQTCTVACKSLWTEG...</td>\n",
|
| 282 |
-
" </tr>\n",
|
| 283 |
-
" <tr>\n",
|
| 284 |
-
" <th>1</th>\n",
|
| 285 |
-
" <td>I3R9M9</td>\n",
|
| 286 |
-
" <td>Archaea</td>\n",
|
| 287 |
-
" <td>1</td>\n",
|
| 288 |
-
" <td>1</td>\n",
|
| 289 |
-
" <td>0</td>\n",
|
| 290 |
-
" <td>0</td>\n",
|
| 291 |
-
" <td>0</td>\n",
|
| 292 |
-
" <td>MSRNDASQLDDGETTAESPPDDQANDAPEVGDPPGDPVDADSGVSR...</td>\n",
|
| 293 |
-
" </tr>\n",
|
| 294 |
-
" <tr>\n",
|
| 295 |
-
" <th>2</th>\n",
|
| 296 |
-
" <td>Q7ZAG8</td>\n",
|
| 297 |
-
" <td>Archaea</td>\n",
|
| 298 |
-
" <td>2</td>\n",
|
| 299 |
-
" <td>1</td>\n",
|
| 300 |
-
" <td>0</td>\n",
|
| 301 |
-
" <td>0</td>\n",
|
| 302 |
-
" <td>0</td>\n",
|
| 303 |
-
" <td>MTKVLVLGGRFGALTAAYTLKRLVGSKADVKVINKSRFSYFRPALP...</td>\n",
|
| 304 |
-
" </tr>\n",
|
| 305 |
-
" <tr>\n",
|
| 306 |
-
" <th>3</th>\n",
|
| 307 |
-
" <td>Q8PZ67</td>\n",
|
| 308 |
-
" <td>Archaea</td>\n",
|
| 309 |
-
" <td>0</td>\n",
|
| 310 |
-
" <td>1</td>\n",
|
| 311 |
-
" <td>0</td>\n",
|
| 312 |
-
" <td>0</td>\n",
|
| 313 |
-
" <td>1</td>\n",
|
| 314 |
-
" <td>MPPKIAEVIQHDVCAACGACEAVCPIGAVTVKKAAEIRDPNDLSLY...</td>\n",
|
| 315 |
-
" </tr>\n",
|
| 316 |
-
" <tr>\n",
|
| 317 |
-
" <th>4</th>\n",
|
| 318 |
-
" <td>Q9YGA6</td>\n",
|
| 319 |
-
" <td>Archaea</td>\n",
|
| 320 |
-
" <td>0</td>\n",
|
| 321 |
-
" <td>1</td>\n",
|
| 322 |
-
" <td>0</td>\n",
|
| 323 |
-
" <td>0</td>\n",
|
| 324 |
-
" <td>0</td>\n",
|
| 325 |
-
" <td>MAGVRLVDVWKVFGEVTAVREMSLEVKDGEFMILLGPSGCGKTTTL...</td>\n",
|
| 326 |
-
" </tr>\n",
|
| 327 |
-
" <tr>\n",
|
| 328 |
-
" <th>...</th>\n",
|
| 329 |
-
" <td>...</td>\n",
|
| 330 |
-
" <td>...</td>\n",
|
| 331 |
-
" <td>...</td>\n",
|
| 332 |
-
" <td>...</td>\n",
|
| 333 |
-
" <td>...</td>\n",
|
| 334 |
-
" <td>...</td>\n",
|
| 335 |
-
" <td>...</td>\n",
|
| 336 |
-
" <td>...</td>\n",
|
| 337 |
-
" </tr>\n",
|
| 338 |
-
" <tr>\n",
|
| 339 |
-
" <th>28021</th>\n",
|
| 340 |
-
" <td>P86949</td>\n",
|
| 341 |
-
" <td>Eukaryota</td>\n",
|
| 342 |
-
" <td>0</td>\n",
|
| 343 |
-
" <td>0</td>\n",
|
| 344 |
-
" <td>0</td>\n",
|
| 345 |
-
" <td>0</td>\n",
|
| 346 |
-
" <td>1</td>\n",
|
| 347 |
-
" <td>MLRFIAIVALIATVNAKGGTYGIGVLPSVTYVSGGGGGYPGIYGTY...</td>\n",
|
| 348 |
-
" </tr>\n",
|
| 349 |
-
" <tr>\n",
|
| 350 |
-
" <th>28022</th>\n",
|
| 351 |
-
" <td>P86950</td>\n",
|
| 352 |
-
" <td>Eukaryota</td>\n",
|
| 353 |
-
" <td>0</td>\n",
|
| 354 |
-
" <td>0</td>\n",
|
| 355 |
-
" <td>0</td>\n",
|
| 356 |
-
" <td>0</td>\n",
|
| 357 |
-
" <td>1</td>\n",
|
| 358 |
-
" <td>MKPFISLASLIVLIASASAGGDDDYGKYGYGSYGPGIGGIGGGGGG...</td>\n",
|
| 359 |
-
" </tr>\n",
|
| 360 |
-
" <tr>\n",
|
| 361 |
-
" <th>28023</th>\n",
|
| 362 |
-
" <td>P86951</td>\n",
|
| 363 |
-
" <td>Eukaryota</td>\n",
|
| 364 |
-
" <td>0</td>\n",
|
| 365 |
-
" <td>0</td>\n",
|
| 366 |
-
" <td>0</td>\n",
|
| 367 |
-
" <td>0</td>\n",
|
| 368 |
-
" <td>1</td>\n",
|
| 369 |
-
" <td>MLKLVCAVVLIATVNAKGSSPGFGIGQLPGITVVSGGVSGGSLSGG...</td>\n",
|
| 370 |
-
" </tr>\n",
|
| 371 |
-
" <tr>\n",
|
| 372 |
-
" <th>28024</th>\n",
|
| 373 |
-
" <td>P86983</td>\n",
|
| 374 |
-
" <td>Eukaryota</td>\n",
|
| 375 |
-
" <td>3</td>\n",
|
| 376 |
-
" <td>0</td>\n",
|
| 377 |
-
" <td>0</td>\n",
|
| 378 |
-
" <td>0</td>\n",
|
| 379 |
-
" <td>1</td>\n",
|
| 380 |
-
" <td>MHQSSLGVLVLFSLIYLCISVHVPFDLNGWKALRLDNNRVQDSTNL...</td>\n",
|
| 381 |
-
" </tr>\n",
|
| 382 |
-
" <tr>\n",
|
| 383 |
-
" <th>28025</th>\n",
|
| 384 |
-
" <td>P86984</td>\n",
|
| 385 |
-
" <td>Eukaryota</td>\n",
|
| 386 |
-
" <td>4</td>\n",
|
| 387 |
-
" <td>0</td>\n",
|
| 388 |
-
" <td>0</td>\n",
|
| 389 |
-
" <td>0</td>\n",
|
| 390 |
-
" <td>1</td>\n",
|
| 391 |
-
" <td>MLMLLCIIATVIPFSLVEGRKGCWADPTPPGKECLYGKEIHGGRNL...</td>\n",
|
| 392 |
-
" </tr>\n",
|
| 393 |
-
" </tbody>\n",
|
| 394 |
-
"</table>\n",
|
| 395 |
-
"<p>28026 rows × 8 columns</p>\n",
|
| 396 |
-
"</div>"
|
| 397 |
-
],
|
| 398 |
-
"text/plain": [
|
| 399 |
-
" ACC Kingdom Partition Peripheral Transmembrane LipidAnchor \\\n",
|
| 400 |
-
"0 I3R9M8 Archaea 0 1 0 0 \n",
|
| 401 |
-
"1 I3R9M9 Archaea 1 1 0 0 \n",
|
| 402 |
-
"2 Q7ZAG8 Archaea 2 1 0 0 \n",
|
| 403 |
-
"3 Q8PZ67 Archaea 0 1 0 0 \n",
|
| 404 |
-
"4 Q9YGA6 Archaea 0 1 0 0 \n",
|
| 405 |
-
"... ... ... ... ... ... ... \n",
|
| 406 |
-
"28021 P86949 Eukaryota 0 0 0 0 \n",
|
| 407 |
-
"28022 P86950 Eukaryota 0 0 0 0 \n",
|
| 408 |
-
"28023 P86951 Eukaryota 0 0 0 0 \n",
|
| 409 |
-
"28024 P86983 Eukaryota 3 0 0 0 \n",
|
| 410 |
-
"28025 P86984 Eukaryota 4 0 0 0 \n",
|
| 411 |
-
"\n",
|
| 412 |
-
" Soluble Sequence \n",
|
| 413 |
-
"0 0 MSTDSDAETVDLADGVDHQVAMVMDLNKCIGCQTCTVACKSLWTEG... \n",
|
| 414 |
-
"1 0 MSRNDASQLDDGETTAESPPDDQANDAPEVGDPPGDPVDADSGVSR... \n",
|
| 415 |
-
"2 0 MTKVLVLGGRFGALTAAYTLKRLVGSKADVKVINKSRFSYFRPALP... \n",
|
| 416 |
-
"3 1 MPPKIAEVIQHDVCAACGACEAVCPIGAVTVKKAAEIRDPNDLSLY... \n",
|
| 417 |
-
"4 0 MAGVRLVDVWKVFGEVTAVREMSLEVKDGEFMILLGPSGCGKTTTL... \n",
|
| 418 |
-
"... ... ... \n",
|
| 419 |
-
"28021 1 MLRFIAIVALIATVNAKGGTYGIGVLPSVTYVSGGGGGYPGIYGTY... \n",
|
| 420 |
-
"28022 1 MKPFISLASLIVLIASASAGGDDDYGKYGYGSYGPGIGGIGGGGGG... \n",
|
| 421 |
-
"28023 1 MLKLVCAVVLIATVNAKGSSPGFGIGQLPGITVVSGGVSGGSLSGG... \n",
|
| 422 |
-
"28024 1 MHQSSLGVLVLFSLIYLCISVHVPFDLNGWKALRLDNNRVQDSTNL... \n",
|
| 423 |
-
"28025 1 MLMLLCIIATVIPFSLVEGRKGCWADPTPPGKECLYGKEIHGGRNL... \n",
|
| 424 |
-
"\n",
|
| 425 |
-
"[28026 rows x 8 columns]"
|
| 426 |
-
]
|
| 427 |
-
},
|
| 428 |
-
"execution_count": 9,
|
| 429 |
-
"metadata": {},
|
| 430 |
-
"output_type": "execute_result"
|
| 431 |
-
}
|
| 432 |
-
],
|
| 433 |
-
"source": [
|
| 434 |
-
"df = pd.read_csv(path + \"/OG_membrane_type_all.csv\")\n",
|
| 435 |
-
"df = df.drop(columns=['Unnamed: 0'])\n",
|
| 436 |
-
"df"
|
| 437 |
-
]
|
| 438 |
-
},
|
| 439 |
-
{
|
| 440 |
-
"cell_type": "code",
|
| 441 |
-
"execution_count": 14,
|
| 442 |
-
"metadata": {},
|
| 443 |
-
"outputs": [],
|
| 444 |
-
"source": [
|
| 445 |
-
"train = df[df['Partition'] != 4]\n",
|
| 446 |
-
"test = df[df['Partition'] == 4]"
|
| 447 |
-
]
|
| 448 |
-
},
|
| 449 |
-
{
|
| 450 |
-
"cell_type": "code",
|
| 451 |
-
"execution_count": 17,
|
| 452 |
-
"metadata": {},
|
| 453 |
-
"outputs": [],
|
| 454 |
-
"source": [
|
| 455 |
-
"train.to_csv(path + \"/membrane_type_train.csv\", index=False)\n",
|
| 456 |
-
"test.to_csv(path + \"/membrane_type_test.csv\", index=False)"
|
| 457 |
-
]
|
| 458 |
-
},
|
| 459 |
-
{
|
| 460 |
-
"cell_type": "code",
|
| 461 |
-
"execution_count": null,
|
| 462 |
-
"metadata": {},
|
| 463 |
-
"outputs": [],
|
| 464 |
-
"source": []
|
| 465 |
-
}
|
| 466 |
-
],
|
| 467 |
-
"metadata": {
|
| 468 |
-
"kernelspec": {
|
| 469 |
-
"display_name": "Python 3",
|
| 470 |
-
"language": "python",
|
| 471 |
-
"name": "python3"
|
| 472 |
-
},
|
| 473 |
-
"language_info": {
|
| 474 |
-
"codemirror_mode": {
|
| 475 |
-
"name": "ipython",
|
| 476 |
-
"version": 3
|
| 477 |
-
},
|
| 478 |
-
"file_extension": ".py",
|
| 479 |
-
"mimetype": "text/x-python",
|
| 480 |
-
"name": "python",
|
| 481 |
-
"nbconvert_exporter": "python",
|
| 482 |
-
"pygments_lexer": "ipython3",
|
| 483 |
-
"version": "3.10.12"
|
| 484 |
-
}
|
| 485 |
-
},
|
| 486 |
-
"nbformat": 4,
|
| 487 |
-
"nbformat_minor": 2
|
| 488 |
-
}
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|